qskinny/src/nodes/QskBoxRendererEllipse.cpp

1321 lines
41 KiB
C++
Raw Normal View History

/******************************************************************************
* QSkinny - Copyright (C) 2016 Uwe Rathmann
* This file may be used under the terms of the QSkinny License, Version 1.0
*****************************************************************************/
#include "QskBoxRenderer.h"
#include "QskGradient.h"
#include "QskBoxRendererColorMap.h"
#include "QskBoxBorderMetrics.h"
#include "QskBoxBorderColors.h"
#include "QskBoxShapeMetrics.h"
2018-07-19 14:10:48 +02:00
#include <qsggeometry.h>
#include <qmath.h>
using namespace QskVertex;
namespace
{
enum
{
TopLeft = Qt::TopLeftCorner,
TopRight = Qt::TopRightCorner,
BottomLeft = Qt::BottomLeftCorner,
BottomRight = Qt::BottomRightCorner
};
class ArcIterator
{
public:
inline ArcIterator() = default;
inline ArcIterator( int stepCount, bool inverted = false )
{
reset( stepCount, inverted );
}
void reset( int stepCount, bool inverted )
{
m_inverted = inverted;
if ( inverted )
{
m_cos = 1.0;
m_sin = 0.0;
}
else
{
m_cos = 0.0;
m_sin = 1.0;
}
m_stepIndex = 0;
m_stepCount = stepCount;
const double angleStep = M_PI_2 / stepCount;
m_cosStep = qFastCos( angleStep );
m_sinStep = qFastSin( angleStep );
}
inline bool isInverted() const { return m_inverted; }
inline double cos() const { return m_cos; }
inline double sin() const { return m_inverted ? -m_sin : m_sin; }
inline int step() const { return m_stepIndex; }
inline int stepCount() const { return m_stepCount; }
inline bool isDone() const { return m_stepIndex > m_stepCount; }
inline void increment()
{
const double cos0 = m_cos;
m_cos = m_cos * m_cosStep + m_sin * m_sinStep;
m_sin = m_sin * m_cosStep - cos0 * m_sinStep;
++m_stepIndex;
}
inline void operator++() { increment(); }
static int segmentHint( double radius )
{
const double arcLength = radius * M_PI_2;
return qBound( 3, qCeil( arcLength / 3.0 ), 18 ); // every 3 pixels
}
private:
double m_cos;
double m_sin;
int m_stepIndex;
double m_cosStep;
double m_sinStep;
int m_stepCount;
bool m_inverted;
};
}
namespace
{
class BorderValuesUniform
{
public:
inline BorderValuesUniform( const QskBoxRenderer::Metrics& metrics ):
m_corner( metrics.corner[0] ),
m_dx1( m_corner.radiusInnerX ),
m_dy1( m_corner.radiusInnerY )
{
}
inline void setAngle( qreal cos, qreal sin )
{
if ( !m_corner.isCropped )
{
m_dx1 = cos * m_corner.radiusInnerX;;
m_dy1 = sin * m_corner.radiusInnerY;
}
m_dx2 = cos * m_corner.radiusX;
m_dy2 = sin * m_corner.radiusY;
}
inline qreal dx1( int ) const { return m_dx1; }
inline qreal dy1( int ) const { return m_dy1; }
inline qreal dx2( int ) const { return m_dx2; }
inline qreal dy2( int ) const { return m_dy2; }
private:
const QskBoxRenderer::Metrics::Corner& m_corner;
qreal m_dx1, m_dy1, m_dx2, m_dy2;
};
class BorderValues
{
public:
inline BorderValues( const QskBoxRenderer::Metrics& metrics ):
m_uniform( metrics.isRadiusRegular )
{
for ( int i = 0; i < 4; i++ )
{
const auto& c = metrics.corner[i];
auto& v = m_inner[i];
if ( c.radiusInnerX >= 0.0 )
{
v.x0 = 0.0;
v.rx = c.radiusInnerX;
}
else
{
v.x0 = c.radiusInnerX;
v.rx = 0.0;
}
if ( c.radiusInnerY >= 0.0 )
{
v.y0 = 0.0;
v.ry = c.radiusInnerY;
}
else
{
v.y0 = c.radiusInnerY;
v.ry = 0.0;
}
m_outer[i].x0 = m_outer[i].y0 = 0.0;
m_outer[i].rx = c.radiusX;
m_outer[i].ry = c.radiusY;
}
}
inline void setAngle( qreal cos, qreal sin )
{
m_inner[0].setAngle( cos, sin );
m_inner[1].setAngle( cos, sin );
m_inner[2].setAngle( cos, sin );
m_inner[3].setAngle( cos, sin );
m_outer[0].setAngle( cos, sin );
if ( !m_uniform )
{
m_outer[1].setAngle( cos, sin );
m_outer[2].setAngle( cos, sin );
m_outer[3].setAngle( cos, sin );
}
}
inline qreal dx1( int pos ) const { return m_inner[pos].dx; }
inline qreal dy1( int pos ) const { return m_inner[pos].dy; }
inline qreal dx2( int pos ) const
{ return m_uniform ? m_outer[0].dx : m_outer[pos].dx; }
inline qreal dy2( int pos ) const
{ return m_uniform ? m_outer[0].dy : m_outer[pos].dy; }
private:
bool m_uniform;
class Values
{
public:
inline void setAngle( qreal cos, qreal sin )
{
dx = x0 + cos * rx;
dy = y0 + sin * ry;
}
qreal dx, dy;
qreal x0, y0, rx, ry;
};
Values m_inner[4];
Values m_outer[4];
};
class FillValues
{
public:
inline FillValues( const QskBoxRenderer::Metrics& metrics )
{
for ( int i = 0; i < 4; i++ )
{
const auto& c = metrics.corner[i];
auto& v = m_inner[i];
if ( c.radiusInnerX >= 0.0 )
{
v.x0 = 0.0;
v.rx = c.radiusInnerX;
}
else
{
v.x0 = c.radiusInnerX;
v.rx = 0.0;
}
if ( c.radiusInnerY >= 0.0 )
{
v.y0 = 0.0;
v.ry = c.radiusInnerY;
}
else
{
v.y0 = c.radiusInnerY;
v.ry = 0.0;
}
}
}
inline void setAngle( qreal cos, qreal sin )
{
m_inner[0].setAngle( cos, sin );
m_inner[1].setAngle( cos, sin );
m_inner[2].setAngle( cos, sin );
m_inner[3].setAngle( cos, sin );
}
inline qreal dx( int pos ) const { return m_inner[pos].dx; }
inline qreal dy( int pos ) const { return m_inner[pos].dy; }
private:
class Values
{
public:
inline void setAngle( qreal cos, qreal sin )
{
dx = x0 + cos * rx;
dy = y0 + sin * ry;
}
qreal dx, dy;
qreal x0, y0, rx, ry;
};
Values m_inner[4];
};
}
namespace
{
class VRectEllipseIterator
{
public:
VRectEllipseIterator( const QskBoxRenderer::Metrics& metrics ):
m_metrics( metrics ),
m_values( metrics )
{
const auto& c = metrics.corner;
m_v[0].left = c[TopLeft].centerX;
m_v[0].right = c[TopRight].centerX;
m_v[0].y = metrics.innerQuad.top;
m_v[1] = m_v[0];
m_leadingCorner = ( c[TopLeft].stepCount >= c[TopRight].stepCount )
? TopLeft : TopRight;
m_arcIterator.reset( c[m_leadingCorner].stepCount, false );
}
template< class ColorIterator >
inline void setGradientLine( const ColorIterator& it, ColoredLine* line )
{
const qreal y = it.value();
const qreal f = ( y - m_v[0].y ) / ( m_v[1].y - m_v[0].y );
const qreal left = m_v[0].left + f * ( m_v[1].left - m_v[0].left );
const qreal right = m_v[0].right + f * ( m_v[1].right - m_v[0].right );
line->setLine( left, y, right, y, it.color() );
}
template< class ColorIterator >
inline void setContourLine( const ColorIterator& it, ColoredLine* line )
{
line->setLine( m_v[1].left, m_v[1].y,
m_v[1].right, m_v[1].y, it.colorAt( m_v[1].y ) );
}
inline qreal value() const
{
return m_v[1].y;
}
inline bool advance()
{
const auto& centerQuad = m_metrics.centerQuad;
const auto& c = m_metrics.corner;
if ( m_arcIterator.step() == m_arcIterator.stepCount() )
{
if ( m_arcIterator.isInverted() )
return false;
m_leadingCorner = ( c[BottomLeft].stepCount >= c[BottomRight].stepCount )
? BottomLeft : BottomRight;
m_arcIterator.reset( c[m_leadingCorner].stepCount, true );
if ( centerQuad.top < centerQuad.bottom )
{
m_v[0] = m_v[1];
m_v[1].left = m_metrics.innerQuad.left;
m_v[1].right = m_metrics.innerQuad.right;
m_v[1].y = centerQuad.bottom;
return true;
}
}
m_arcIterator.increment();
m_values.setAngle( m_arcIterator.cos(), m_arcIterator.sin() );
m_v[0] = m_v[1];
if ( m_arcIterator.isInverted() )
{
m_v[1].left = c[BottomLeft].centerX - m_values.dx( BottomLeft );
m_v[1].right = c[BottomRight].centerX + m_values.dx( BottomRight );
m_v[1].y = c[ m_leadingCorner ].centerY + m_values.dy( m_leadingCorner );
}
else
{
m_v[1].left = c[TopLeft].centerX - m_values.dx( TopLeft );
m_v[1].right = c[TopRight].centerX + m_values.dx( TopRight );
m_v[1].y = c[ m_leadingCorner ].centerY - m_values.dy( m_leadingCorner );
}
return true;
}
private:
const QskBoxRenderer::Metrics& m_metrics;
ArcIterator m_arcIterator;
int m_leadingCorner;
FillValues m_values;
struct { qreal left, right, y; } m_v[2];
};
class HRectEllipseIterator
{
public:
HRectEllipseIterator( const QskBoxRenderer::Metrics& metrics ):
m_metrics( metrics ),
m_values( metrics )
{
const auto& c = metrics.corner;
m_v[0].top = c[TopLeft].centerY;
m_v[0].bottom = c[BottomLeft].centerY;
m_v[0].x = metrics.innerQuad.left;
m_v[1] = m_v[0];
m_leadingCorner = ( c[TopLeft].stepCount >= c[BottomLeft].stepCount )
? TopLeft : BottomLeft;
m_arcIterator.reset( c[m_leadingCorner].stepCount, true );
}
template< class ColorIterator >
inline void setGradientLine( const ColorIterator& it, ColoredLine* line )
{
const qreal x = it.value();
const qreal f = ( x - m_v[0].x ) / ( m_v[1].x - m_v[0].x );
const qreal top = m_v[0].top + f * ( m_v[1].top - m_v[0].top );
const qreal bottom = m_v[0].bottom + f * ( m_v[1].bottom - m_v[0].bottom );
line->setLine( x, top, x, bottom, it.color() );
}
template< class ColorIterator >
inline void setContourLine( const ColorIterator& it, ColoredLine* line )
{
line->setLine( m_v[1].x, m_v[1].top,
m_v[1].x, m_v[1].bottom, it.colorAt( m_v[1].x ) );
}
inline qreal value() const
{
return m_v[1].x;
}
inline bool advance()
{
const auto& centerQuad = m_metrics.centerQuad;
const auto& c = m_metrics.corner;
if ( m_arcIterator.step() == m_arcIterator.stepCount() )
{
if ( !m_arcIterator.isInverted() )
return false;
m_leadingCorner = ( c[TopRight].stepCount >= c[BottomRight].stepCount )
? TopRight : BottomRight;
m_arcIterator.reset( c[m_leadingCorner].stepCount, false );
if ( centerQuad.left < centerQuad.right )
{
m_v[0] = m_v[1];
m_v[1].top = m_metrics.innerQuad.top;
m_v[1].bottom = m_metrics.innerQuad.bottom;
m_v[1].x = centerQuad.right;
return true;
}
}
m_arcIterator.increment();
m_values.setAngle( m_arcIterator.cos(), m_arcIterator.sin() );
m_v[0] = m_v[1];
if ( m_arcIterator.isInverted() )
{
m_v[1].top = c[TopLeft].centerY - m_values.dy( TopLeft );
m_v[1].bottom = c[BottomLeft].centerY + m_values.dy( BottomLeft );
m_v[1].x = c[m_leadingCorner].centerX - m_values.dx( m_leadingCorner );
}
else
{
m_v[1].top = c[TopRight].centerY - m_values.dy( TopRight );
m_v[1].bottom = c[BottomRight].centerY + m_values.dy( BottomRight );
m_v[1].x = c[m_leadingCorner].centerX + m_values.dx( m_leadingCorner );
}
return true;
}
private:
const QskBoxRenderer::Metrics& m_metrics;
ArcIterator m_arcIterator;
int m_leadingCorner;
FillValues m_values;
struct { qreal top, bottom, x; } m_v[2];
};
}
namespace
{
class BorderMapNone
{
public:
static inline constexpr Color colorAt( int ) { return Color(); }
};
class BorderMapSolid
{
public:
inline BorderMapSolid( QRgb rgb ):
m_color( rgb )
{
}
inline Color colorAt( int ) const { return m_color; }
const Color m_color;
};
class BorderMapGradient
{
public:
inline BorderMapGradient( int stepCount, QRgb rgb1, QRgb rgb2 ):
m_stepCount( stepCount ),
m_color1( rgb1 ),
m_color2( rgb2 )
{
}
inline Color colorAt( int step ) const
{
return m_color1.interpolatedTo( m_color2, step / m_stepCount );
}
private:
const qreal m_stepCount;
const Color m_color1, m_color2;
};
template< class Line, class BorderValues >
class Stroker
{
public:
inline Stroker( const QskBoxRenderer::Metrics& metrics ):
m_metrics( metrics )
{
}
template< class BorderMap, class FillMap >
inline void createLines( Qt::Orientation orientation, Line* borderLines,
const BorderMap& borderMapTL, const BorderMap& borderMapTR,
const BorderMap& borderMapBL, const BorderMap& borderMapBR,
Line* fillLines, FillMap& fillMap )
{
const auto& c = m_metrics.corner;
#if 1
// TODO ...
const int stepCount = c[0].stepCount;
#endif
Line* linesBR, * linesTR, * linesTL, * linesBL;
linesBR = linesTR = linesTL = linesBL = nullptr;
const int numCornerLines = stepCount + 1;
int numFillLines = fillLines ? 2 * numCornerLines : 0;
if ( orientation == Qt::Vertical )
{
if ( borderLines )
{
linesBR = borderLines;
linesTR = linesBR + numCornerLines;
linesTL = linesTR + numCornerLines;
linesBL = linesTL + numCornerLines;
}
if ( fillLines )
{
if ( m_metrics.centerQuad.top >= m_metrics.centerQuad.bottom )
numFillLines--;
}
}
else
{
if ( borderLines )
{
linesTR = borderLines + 1;
linesTL = linesTR + numCornerLines;
linesBL = linesTL + numCornerLines;
linesBR = linesBL + numCornerLines;
}
if ( fillLines )
{
if ( m_metrics.centerQuad.left >= m_metrics.centerQuad.right )
numFillLines--;
}
}
BorderValues v( m_metrics );
/*
It would be possible to run over [0, 0.5 * M_PI_2]
and create 8 values ( instead of 4 ) in each step. TODO ...
*/
for ( ArcIterator it( stepCount, false ); !it.isDone(); ++it )
{
v.setAngle( it.cos(), it.sin() );
if ( borderLines )
{
const int j = it.step();
const int k = numCornerLines - it.step() - 1;
{
constexpr auto corner = TopLeft;
linesTL[j].setLine(
c[corner].centerX - v.dx1( corner ),
c[corner].centerY - v.dy1( corner ),
c[corner].centerX - v.dx2( corner ),
c[corner].centerY - v.dy2( corner ),
borderMapTL.colorAt( j ) );
}
{
constexpr auto corner = TopRight;
linesTR[k].setLine(
c[corner].centerX + v.dx1( corner ),
c[corner].centerY - v.dy1( corner ),
c[corner].centerX + v.dx2( corner ),
c[corner].centerY - v.dy2( corner ),
borderMapTR.colorAt( k ) );
}
{
constexpr auto corner = BottomLeft;
linesBL[k].setLine(
c[corner].centerX - v.dx1( corner ),
c[corner].centerY + v.dy1( corner ),
c[corner].centerX - v.dx2( corner ),
c[corner].centerY + v.dy2( corner ),
borderMapBL.colorAt( k ) );
}
{
constexpr auto corner = BottomRight;
linesBR[j].setLine(
c[corner].centerX + v.dx1( corner ),
c[corner].centerY + v.dy1( corner ),
c[corner].centerX + v.dx2( corner ),
c[corner].centerY + v.dy2( corner ),
borderMapBR.colorAt( j ) );
}
}
if ( fillLines )
{
const auto& ri = m_metrics.innerQuad;
if ( orientation == Qt::Vertical )
{
const int j = it.step();
const int k = numFillLines - it.step() - 1;
const qreal x11 = c[TopLeft].centerX - v.dx1( TopLeft );
const qreal x12 = c[TopRight].centerX + v.dx1( TopRight );
const qreal y1 = c[TopLeft].centerY - v.dy1( TopLeft );
const auto c1 = fillMap.colorAt( ( y1 - ri.top ) / ri.height );
const qreal x21 = c[BottomLeft].centerX - v.dx1( BottomLeft );
const qreal x22 = c[BottomRight].centerX + v.dx1( BottomRight );
const qreal y2 = c[BottomLeft].centerY + v.dy1( BottomLeft );
const auto c2 = fillMap.colorAt( ( y2 - ri.top ) / ri.height );
fillLines[j].setLine( x11, y1, x12, y1, c1 );
fillLines[k].setLine( x21, y2, x22, y2, c2 );
}
else
{
const int j = stepCount - it.step();
const int k = numFillLines - 1 - stepCount + it.step();
const qreal x1 = c[TopLeft].centerX - v.dx1( TopLeft );
const qreal y11 = c[TopLeft].centerY - v.dy1( TopLeft );
const qreal y12 = c[BottomLeft].centerY + v.dy1( BottomLeft );;
const auto c1 = fillMap.colorAt( ( x1 - ri.left ) / ri.width );
const qreal x2 = c[TopRight].centerX + v.dx1( TopRight );
const qreal y21 = c[TopRight].centerY - v.dy1( TopRight );
const qreal y22 = c[BottomRight].centerY + v.dy1( BottomRight );;
const auto c2 = fillMap.colorAt( ( x2 - ri.left ) / ri.width );
fillLines[j].setLine( x1, y11, x1, y12, c1 );
fillLines[k].setLine( x2, y21, x2, y22, c2 );
}
}
}
#if 1
if ( borderLines )
{
const int k = 4 * numCornerLines;
if ( orientation == Qt::Vertical )
borderLines[k] = borderLines[0];
else
borderLines[0] = borderLines[k];
}
#endif
}
private:
const QskBoxRenderer::Metrics& m_metrics;
};
}
static inline int qskFillLineCount(
const QskBoxRenderer::Metrics& metrics, const QskGradient& gradient )
{
const int stepCount = metrics.corner[0].stepCount;
if ( !gradient.isVisible() )
return 0;
int lineCount = 0;
switch ( gradient.orientation() )
{
case QskGradient::Diagonal:
{
lineCount += 2 * ( stepCount + 1 );
if ( metrics.centerQuad.left >= metrics.centerQuad.right )
lineCount--;
if ( metrics.centerQuad.top >= metrics.centerQuad.bottom )
lineCount--;
/*
For diagonal lines the points at the opposite
side are no points interpolating the outline.
So we need to insert interpolating lines on both sides
*/
lineCount *= 2; // a real ellipse could be done with lineCount lines: TODO ...
#if 1
/*
The termination of the fill algorithm is a bit random
and might result in having an additional line.
Until this effect is completely understood, we better
reserve memory for this to avoid crashes.
*/
lineCount++; // happens in a corner case - needs to be understood: TODO
#endif
break;
}
case QskGradient::Vertical:
{
lineCount += qMax( metrics.corner[ TopLeft ].stepCount,
metrics.corner[ TopRight ].stepCount ) + 1;
lineCount += qMax( metrics.corner[ BottomLeft ].stepCount,
metrics.corner[ BottomRight ].stepCount ) + 1;
if ( metrics.centerQuad.top >= metrics.centerQuad.bottom )
lineCount--;
break;
}
case QskGradient::Horizontal:
{
lineCount += qMax( metrics.corner[ TopLeft ].stepCount,
metrics.corner[ BottomLeft ].stepCount ) + 1;
lineCount += qMax( metrics.corner[ TopRight ].stepCount,
metrics.corner[ BottomRight ].stepCount ) + 1;
if ( metrics.centerQuad.left >= metrics.centerQuad.right )
lineCount--;
break;
}
}
// adding vertexes for the stops - beside the first/last
if ( !gradient.isMonochrome() )
lineCount += gradient.stops().size() - 2;
return lineCount;
}
template< class Line, class BorderMap, class FillMap >
static inline void qskRenderLines( const QskBoxRenderer::Metrics& metrics,
Qt::Orientation orientation, Line* borderLines,
const BorderMap& borderMapTL, const BorderMap& borderMapTR,
const BorderMap& borderMapBL, const BorderMap& borderMapBR,
Line* fillLines, const FillMap& fillMap )
{
if ( metrics.isBorderRegular && metrics.isRadiusRegular )
{
// the same border width for all edges
Stroker< Line, BorderValuesUniform > stroker( metrics );
stroker.createLines( orientation, borderLines, borderMapTL, borderMapTR,
borderMapBL, borderMapBR, fillLines, fillMap );
}
else
{
Stroker< Line, BorderValues > stroker( metrics );
stroker.createLines( orientation, borderLines, borderMapTL, borderMapTR,
borderMapBL, borderMapBR, fillLines, fillMap );
}
}
template< class Line, class BorderMap, class FillMap >
static inline void qskRenderLines( const QskBoxRenderer::Metrics& metrics,
Qt::Orientation orientation, Line* borderLines,
const BorderMap& borderMap, Line* fillLines, const FillMap& fillMap )
{
qskRenderLines( metrics, orientation, borderLines, borderMap, borderMap,
borderMap, borderMap, fillLines, fillMap );
}
template< class Line, class BorderMap >
static inline void qskRenderBorderLines( const QskBoxRenderer::Metrics& metrics,
Qt::Orientation orientation, Line* lines,
const BorderMap& borderMapTL, const BorderMap& borderMapTR,
const BorderMap& borderMapBL, const BorderMap& borderMapBR )
{
qskRenderLines( metrics, orientation, lines, borderMapTL, borderMapTR,
borderMapBL, borderMapBR, static_cast< Line* >( nullptr ), ColorMapNone() );
}
template< class Line, class BorderMap >
static inline void qskRenderBorderLines( const QskBoxRenderer::Metrics& metrics,
Qt::Orientation orientation, Line* lines, const BorderMap& borderMap )
{
qskRenderBorderLines( metrics, orientation, lines,
borderMap, borderMap, borderMap, borderMap );
}
template< class Line, class FillMap >
static inline void qskRenderFillLines( const QskBoxRenderer::Metrics& metrics,
Qt::Orientation orientation, Line* lines, const FillMap& fillMap )
{
qskRenderLines( metrics, orientation,
static_cast< Line* >( nullptr ), BorderMapNone(), lines, fillMap );
}
static inline void qskRenderBorder( const QskBoxRenderer::Metrics& metrics,
Qt::Orientation orientation, const QskBoxBorderColors& colors, ColoredLine* line )
{
const auto& c = colors;
if ( colors.isMonochrome() )
{
qskRenderBorderLines( metrics, orientation, line, BorderMapSolid( c.rgb( Qsk::Left ) ) );
}
else
{
const int stepCount = metrics.corner[0].stepCount;
qskRenderBorderLines( metrics, orientation, line,
BorderMapGradient( stepCount, c.rgb( Qsk::Top ), c.rgb( Qsk::Left ) ),
BorderMapGradient( stepCount, c.rgb( Qsk::Right ), c.rgb( Qsk::Top ) ),
BorderMapGradient( stepCount, c.rgb( Qsk::Left ), c.rgb( Qsk::Bottom ) ),
BorderMapGradient( stepCount, c.rgb( Qsk::Bottom ), c.rgb( Qsk::Right ) )
);
}
}
static inline void qskRenderFillRandom( const QskBoxRenderer::Metrics& metrics,
const QskGradient& gradient, ColoredLine* line )
{
if ( gradient.isMonochrome() )
{
const ColorMapSolid map( gradient.startColor() );
qskRenderFillLines( metrics, Qt::Vertical, line, map );
}
else
{
const auto orientation = ( gradient.orientation() == QskGradient::Vertical )
? Qt::Vertical : Qt::Horizontal;
const ColorMapGradient map( gradient.startColor(), gradient.endColor() );
qskRenderFillLines( metrics, orientation, line, map );
}
}
static inline void qskRenderBoxRandom(
const QskBoxRenderer::Metrics& metrics, const QskBoxBorderColors& borderColors,
const QskGradient& gradient, ColoredLine* fillLine, ColoredLine* borderLine )
{
const auto& bc = borderColors;
if ( bc.isMonochrome() )
{
const BorderMapSolid borderMap( bc.rgb( Qsk::Left ) );
if ( gradient.isMonochrome() )
{
const ColorMapSolid fillMap( gradient.startColor() );
qskRenderLines( metrics, Qt::Vertical, borderLine, borderMap, fillLine, fillMap );
}
else
{
const auto orientation = ( gradient.orientation() == QskGradient::Vertical )
? Qt::Vertical : Qt::Horizontal;
const ColorMapGradient fillMap( gradient.startColor(), gradient.endColor() );
qskRenderLines( metrics, orientation, borderLine, borderMap, fillLine, fillMap );
}
}
else
{
const int n = metrics.corner[0].stepCount;
const BorderMapGradient tl( n, bc.rgb( Qsk::Top ), bc.rgb( Qsk::Left ) );
const BorderMapGradient tr( n, bc.rgb( Qsk::Right ), bc.rgb( Qsk::Top ) );
const BorderMapGradient bl( n, bc.rgb( Qsk::Left ), bc.rgb( Qsk::Bottom ) );
const BorderMapGradient br( n, bc.rgb( Qsk::Bottom ), bc.rgb( Qsk::Right ) );
if ( gradient.isMonochrome() )
{
const ColorMapSolid fillMap( gradient.startColor() );
qskRenderLines( metrics, Qt::Vertical, borderLine, tl, tr, bl, br, fillLine, fillMap );
}
else
{
const auto orientation = ( gradient.orientation() == QskGradient::Vertical )
? Qt::Vertical : Qt::Horizontal;
const ColorMapGradient fillMap( gradient.startColor(), gradient.endColor() );
qskRenderLines( metrics, orientation, borderLine, tl, tr, bl, br, fillLine, fillMap );
}
}
}
static inline void qskRenderFillOrdered( const QskBoxRenderer::Metrics& metrics,
const QskGradient& gradient, ColoredLine* lines )
{
const auto& r = metrics.innerQuad;
/*
The algo for irregular radii at opposite corners is not yet
implemented TODO ...
*/
if( gradient.orientation() == QskGradient::Horizontal )
{
HRectEllipseIterator it( metrics );
QskVertex::fillOrdered( it, r.left, r.right, gradient, lines );
}
else
{
VRectEllipseIterator it( metrics );
QskVertex::fillOrdered( it, r.top, r.bottom, gradient, lines );
}
}
QskBoxRenderer::Metrics::Metrics( const QRectF& rect,
const QskBoxShapeMetrics& shape, const QskBoxBorderMetrics& border ):
outerQuad( rect )
{
isRadiusRegular = shape.isRectellipse();
for ( int i = 0; i < 4; i++ )
{
auto& c = corner[i];
const QSizeF radius = shape.radius( static_cast< Qt::Corner >( i ) );
c.radiusX = qBound( 0.0, radius.width(), 0.5 * outerQuad.width );
c.radiusY = qBound( 0.0, radius.height(), 0.5 * outerQuad.height );
c.stepCount = ArcIterator::segmentHint( qMax( c.radiusX, c.radiusY ) );
switch( i )
{
case TopLeft:
c.centerX = outerQuad.left + c.radiusX;
c.centerY = outerQuad.top + c.radiusY;
break;
case TopRight:
c.centerX = outerQuad.right - c.radiusX;
c.centerY = outerQuad.top + c.radiusY;
break;
case BottomLeft:
c.centerX = outerQuad.left + c.radiusX;
c.centerY = outerQuad.bottom - c.radiusY;
break;
case BottomRight:
c.centerX = outerQuad.right - c.radiusX;
c.centerY = outerQuad.bottom - c.radiusY;
break;
}
}
centerQuad.left = qMax( corner[ TopLeft].centerX,
corner[ BottomLeft ].centerX );
centerQuad.right = qMin( corner[ TopRight].centerX,
corner[ BottomRight ].centerX );
centerQuad.top = qMax( corner[ TopLeft].centerY,
corner[ TopRight ].centerY );
centerQuad.bottom = qMin( corner[ BottomLeft].centerY,
corner[ BottomRight ].centerY );
centerQuad.width = centerQuad.right - centerQuad.left;
centerQuad.height = centerQuad.bottom - centerQuad.top;
// now the bounding rectangle of the fill area
const auto bw = border.widths();
innerQuad.left = outerQuad.left + bw.left();
innerQuad.right = outerQuad.right - bw.right();
innerQuad.top = outerQuad.top + bw.top();
innerQuad.bottom = outerQuad.bottom - bw.bottom();
innerQuad.left = qMin( innerQuad.left, centerQuad.right );
innerQuad.right = qMax( innerQuad.right, centerQuad.left );
innerQuad.top = qMin( innerQuad.top, centerQuad.bottom );
innerQuad.bottom = qMax( innerQuad.bottom, centerQuad.top );
if ( innerQuad.left > innerQuad.right )
{
innerQuad.left = innerQuad.right =
innerQuad.right + 0.5 * ( innerQuad.left - innerQuad.right );
}
if ( innerQuad.top > innerQuad.bottom )
{
innerQuad.top = innerQuad.bottom =
innerQuad.bottom + 0.5 * ( innerQuad.top - innerQuad.bottom );
}
innerQuad.width = innerQuad.right - innerQuad.left;
innerQuad.height = innerQuad.bottom - innerQuad.top;
const qreal borderLeft = innerQuad.left - outerQuad.left;
const qreal borderTop = innerQuad.top - outerQuad.top;
const qreal borderRight = outerQuad.right - innerQuad.right;
const qreal borderBottom = outerQuad.bottom - innerQuad.bottom;
for ( int i = 0; i < 4; i++ )
{
auto& c = corner[i];
switch( i )
{
case TopLeft:
{
c.radiusInnerX = c.radiusX - borderLeft;
c.radiusInnerY = c.radiusY - borderTop;
c.isCropped = ( c.centerX <= innerQuad.left )
|| ( c.centerY <= innerQuad.top );
break;
}
case TopRight:
{
c.radiusInnerX = c.radiusX - borderRight;
c.radiusInnerY = c.radiusY - borderTop;
c.isCropped = ( c.centerX >= innerQuad.right )
|| ( c.centerY <= innerQuad.top );
break;
}
case BottomLeft:
{
c.radiusInnerX = c.radiusX - borderLeft;
c.radiusInnerY = c.radiusY - borderBottom;
c.isCropped = ( c.centerX <= innerQuad.left )
|| ( c.centerY >= innerQuad.bottom );
break;
}
case BottomRight:
{
c.radiusInnerX = c.radiusX - borderRight;
c.radiusInnerY = c.radiusY - borderBottom;
c.isCropped = ( c.centerX >= innerQuad.right )
|| ( c.centerY >= innerQuad.bottom );
break;
}
}
}
isTotallyCropped =
corner[ TopLeft ].isCropped &&
corner[ TopRight ].isCropped &&
corner[ BottomRight ].isCropped &&
corner[ BottomLeft ].isCropped;
// number of steps for iterating over the corners
isBorderRegular = ( borderLeft == borderTop )
&& ( borderTop == borderRight ) && ( borderRight == borderBottom );
}
void QskBoxRenderer::renderRectellipseBorder(
const QRectF& rect, const QskBoxShapeMetrics& shape,
const QskBoxBorderMetrics& border, QSGGeometry& geometry )
{
const Metrics metrics( rect, shape, border );
if ( metrics.innerQuad == metrics.outerQuad )
{
allocateLines< Line >( geometry, 0 );
return;
}
const int stepCount = metrics.corner[0].stepCount;
const int lineCount = 4 * ( stepCount + 1 ) + 1;
const auto line = allocateLines< Line >( geometry, lineCount );
qskRenderBorderLines( metrics, Qt::Vertical, line, BorderMapNone() );
}
void QskBoxRenderer::renderRectellipseFill(
const QRectF& rect, const QskBoxShapeMetrics& shape,
const QskBoxBorderMetrics& border, QSGGeometry& geometry )
{
const Metrics metrics( rect, shape, border );
if ( ( metrics.innerQuad.width <= 0 ) || ( metrics.innerQuad.height <= 0 ) )
{
allocateLines< Line >( geometry, 0 );
return;
}
if ( metrics.isTotallyCropped )
{
// degenerated to a rectangle
const QRectF r( metrics.innerQuad.left, metrics.innerQuad.top,
metrics.innerQuad.width, metrics.innerQuad.height );
renderRectFill( r, QskBoxShapeMetrics(),
QskBoxBorderMetrics(), geometry );
return;
}
const int stepCount = metrics.corner[0].stepCount;
int lineCount = 2 * ( stepCount + 1 );
if ( metrics.centerQuad.top >= metrics.centerQuad.bottom )
lineCount++;
const auto line = allocateLines< Line >( geometry, lineCount );
qskRenderFillLines( metrics, Qt::Vertical, line, ColorMapNone() );
}
void QskBoxRenderer::renderRectellipse( const QRectF& rect,
const QskBoxShapeMetrics& shape, const QskBoxBorderMetrics& border,
const QskBoxBorderColors& borderColors, const QskGradient& gradient,
QSGGeometry& geometry )
{
const Metrics metrics( rect, shape, border );
int fillLineCount = 0;
if ( !metrics.innerQuad.isEmpty() && gradient.isVisible() )
{
if ( metrics.isTotallyCropped )
{
// degenerated to a rectangle
fillLineCount = gradient.stops().count();
#if 1
// code copied from QskBoxRendererRect.cpp TODO ...
if ( gradient.orientation() == QskGradient::Diagonal )
{
if ( metrics.centerQuad.width == metrics.centerQuad.height )
{
if ( !gradient.hasStopAt( 0.5 ) )
fillLineCount++;
}
else
{
// we might need extra lines for the corners
fillLineCount += 2;
}
}
#endif
}
else
{
fillLineCount = qskFillLineCount( metrics, gradient );
}
}
const int stepCount = metrics.corner[0].stepCount;
int borderLineCount = 0;
if ( borderColors.isVisible() && metrics.innerQuad != metrics.outerQuad )
borderLineCount = 4 * ( stepCount + 1 ) + 1;
int lineCount = borderLineCount + fillLineCount;
bool extraLine = false;
if ( borderLineCount > 0 && fillLineCount > 0 )
{
if ( !gradient.isMonochrome() &&
( gradient.orientation() == QskGradient::Diagonal ) )
{
/*
The filling ends at 45° and we have no implementation
for creating the border from there. So we need to
insert an extra dummy line to connect fill and border
*/
extraLine = true;
lineCount++;
}
}
auto line = allocateLines< ColoredLine >( geometry, lineCount );
bool fillRandom = true;
if ( fillLineCount > 0 )
{
if ( metrics.isTotallyCropped )
{
fillRandom = false;
}
else if ( !gradient.isMonochrome() )
{
if ( gradient.stops().count() > 2 ||
gradient.orientation() == QskGradient::Diagonal )
{
fillRandom = false;
}
}
if ( fillRandom )
{
if ( !metrics.isRadiusRegular )
{
/*
When we have a combination of corners with the same
or no radius we could use the faster random algo: TODO ...
*/
fillRandom = false;
}
}
}
if ( ( fillLineCount > 0 ) && ( borderLineCount > 0 ) )
{
if ( fillRandom )
{
qskRenderBoxRandom( metrics, borderColors, gradient,
line, line + fillLineCount );
}
else
{
if ( metrics.isTotallyCropped )
{
renderRectFill( metrics.innerQuad, gradient, line );
}
else if ( gradient.orientation() == QskGradient::Diagonal )
{
renderDiagonalFill( metrics, gradient, fillLineCount, line );
}
else
{
qskRenderFillOrdered( metrics, gradient, line );
}
auto borderLines = line + fillLineCount;
if ( extraLine )
borderLines++;
const auto orientation = gradient.orientation() == QskGradient::Horizontal
? Qt::Horizontal : Qt::Vertical;
qskRenderBorder( metrics, orientation, borderColors, borderLines );
if ( extraLine )
{
const auto l = line + fillLineCount;
l[0].p1 = l[-1].p2;
l[0].p2 = l[1].p1;
}
}
}
else if ( fillLineCount > 0 )
{
if ( fillRandom )
{
qskRenderFillRandom( metrics, gradient, line );
}
else
{
if ( metrics.isTotallyCropped )
{
renderRectFill( metrics.innerQuad, gradient, line );
}
else if ( gradient.orientation() == QskGradient::Diagonal )
{
renderDiagonalFill( metrics, gradient, fillLineCount, line );
}
else
{
qskRenderFillOrdered( metrics, gradient, line );
}
}
}
else if ( borderLineCount > 0 )
{
#if 1
/*
In case of having an empty innerQuad and monochrome
border colors, we could treat it like filling without border. TODO ...
*/
#endif
qskRenderBorder( metrics, Qt::Vertical, borderColors, line );
}
}