AimRT/_deps/boost-src/libs/graph/example/actor_clustering.cpp
2025-01-12 20:40:08 +08:00

220 lines
6.5 KiB
C++

// Copyright 2004 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
// This program performs betweenness centrality (BC) clustering on the
// actor collaboration graph available at
// http://www.nd.edu/~networks/resources/actor/actor.dat.gz and outputs the
// result of clustering in Pajek format.
//
// This program mimics the BC clustering algorithm program implemented
// by Shashikant Penumarthy for JUNG, so that we may compare results
// and timings.
#include <boost/graph/bc_clustering.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/graph_traits.hpp>
#include <fstream>
#include <iostream>
#include <string>
#include <boost/tokenizer.hpp>
#include <boost/lexical_cast.hpp>
#include <map>
using namespace boost;
struct Actor
{
Actor(int id = -1) : id(id) {}
int id;
};
typedef adjacency_list< vecS, vecS, undirectedS, Actor,
property< edge_centrality_t, double > >
ActorGraph;
typedef graph_traits< ActorGraph >::vertex_descriptor Vertex;
typedef graph_traits< ActorGraph >::edge_descriptor Edge;
void load_actor_graph(std::istream& in, ActorGraph& g)
{
std::map< int, Vertex > actors;
std::string line;
while (getline(in, line))
{
std::vector< Vertex > actors_in_movie;
// Map from the actor numbers on this line to the actor vertices
typedef tokenizer< char_separator< char > > Tok;
Tok tok(line, char_separator< char >(" "));
for (Tok::iterator id = tok.begin(); id != tok.end(); ++id)
{
int actor_id = lexical_cast< int >(*id);
std::map< int, Vertex >::iterator v = actors.find(actor_id);
if (v == actors.end())
{
Vertex new_vertex = add_vertex(Actor(actor_id), g);
actors[actor_id] = new_vertex;
actors_in_movie.push_back(new_vertex);
}
else
{
actors_in_movie.push_back(v->second);
}
}
for (std::vector< Vertex >::iterator i = actors_in_movie.begin();
i != actors_in_movie.end(); ++i)
{
for (std::vector< Vertex >::iterator j = i + 1;
j != actors_in_movie.end(); ++j)
{
if (!edge(*i, *j, g).second)
add_edge(*i, *j, g);
}
}
}
}
template < typename Graph, typename VertexIndexMap, typename VertexNameMap >
std::ostream& write_pajek_graph(std::ostream& out, const Graph& g,
VertexIndexMap vertex_index, VertexNameMap vertex_name)
{
out << "*Vertices " << num_vertices(g) << '\n';
typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator;
for (vertex_iterator v = vertices(g).first; v != vertices(g).second; ++v)
{
out << get(vertex_index, *v) + 1 << " \"" << get(vertex_name, *v)
<< "\"\n";
}
out << "*Edges\n";
typedef typename graph_traits< Graph >::edge_iterator edge_iterator;
for (edge_iterator e = edges(g).first; e != edges(g).second; ++e)
{
out << get(vertex_index, source(*e, g)) + 1 << ' '
<< get(vertex_index, target(*e, g)) + 1 << " 1.0\n"; // HACK!
}
return out;
}
class actor_clustering_threshold : public bc_clustering_threshold< double >
{
typedef bc_clustering_threshold< double > inherited;
public:
actor_clustering_threshold(
double threshold, const ActorGraph& g, bool normalize)
: inherited(threshold, g, normalize), iter(1)
{
}
bool operator()(double max_centrality, Edge e, const ActorGraph& g)
{
std::cout << "Iter: " << iter
<< " Max Centrality: " << (max_centrality / dividend)
<< std::endl;
++iter;
return inherited::operator()(max_centrality, e, g);
}
private:
unsigned int iter;
};
int main(int argc, char* argv[])
{
std::string in_file;
std::string out_file;
double threshold = -1.0;
bool normalize = false;
// Parse command-line options
{
int on_arg = 1;
while (on_arg < argc)
{
std::string arg(argv[on_arg]);
if (arg == "-in")
{
++on_arg;
assert(on_arg < argc);
in_file = argv[on_arg];
}
else if (arg == "-out")
{
++on_arg;
assert(on_arg < argc);
out_file = argv[on_arg];
}
else if (arg == "-threshold")
{
++on_arg;
assert(on_arg < argc);
threshold = lexical_cast< double >(argv[on_arg]);
}
else if (arg == "-normalize")
{
normalize = true;
}
else
{
std::cerr << "Unrecognized parameter \"" << arg << "\".\n";
return -1;
}
++on_arg;
}
if (in_file.empty() || out_file.empty() || threshold < 0)
{
std::cerr << "error: syntax is actor_clustering [options]\n\n"
<< "options are:\n"
<< "\t-in <infile>\tInput file\n"
<< "\t-out <outfile>\tOutput file\n"
<< "\t-threshold <value>\tA threshold value\n"
<< "\t-normalize\tNormalize edge centrality scores\n";
return -1;
}
}
ActorGraph g;
// Load the actor graph
{
std::cout << "Building graph." << std::endl;
std::ifstream in(in_file.c_str());
if (!in)
{
std::cerr << "Unable to open file \"" << in_file
<< "\" for input.\n";
return -2;
}
load_actor_graph(in, g);
}
// Run the algorithm
std::cout << "Clusting..." << std::endl;
betweenness_centrality_clustering(g,
actor_clustering_threshold(threshold, g, normalize),
get(edge_centrality, g));
// Output the graph
{
std::cout << "Writing graph to file: " << out_file << std::endl;
std::ofstream out(out_file.c_str());
if (!out)
{
std::cerr << "Unable to open file \"" << out_file
<< "\" for output.\n";
return -3;
}
write_pajek_graph(out, g, get(vertex_index, g), get(&Actor::id, g));
}
return 0;
}