AimRT/_deps/boost-src/libs/compute/example/opencv_optical_flow.cpp
2025-01-12 20:37:50 +08:00

290 lines
10 KiB
C++

//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Mageswaran.D <mageswaran1989@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#include <iostream>
#include <string>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/interop/opencv/core.hpp>
#include <boost/compute/interop/opencv/highgui.hpp>
#include <boost/compute/utility/source.hpp>
#include <boost/program_options.hpp>
namespace compute = boost::compute;
namespace po = boost::program_options;
// Create naive optical flow program
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE (
const sampler_t sampler = CLK_ADDRESS_CLAMP_TO_EDGE;
__kernel void optical_flow (
read_only
image2d_t current_image,
read_only image2d_t previous_image,
write_only image2d_t optical_flow,
const float scale,
const float offset,
const float lambda,
const float threshold )
{
int2 coords = (int2)(get_global_id(0), get_global_id(1));
float4 current_pixel = read_imagef(current_image,
sampler,
coords);
float4 previous_pixel = read_imagef(previous_image,
sampler,
coords);
int2 x1 = (int2)(offset, 0.f);
int2 y1 = (int2)(0.f, offset);
//get the difference
float4 curdif = previous_pixel - current_pixel;
//calculate the gradient
//Image 2 first
float4 gradx = read_imagef(previous_image,
sampler,
coords+x1) -
read_imagef(previous_image,
sampler,
coords-x1);
//Image 1
gradx += read_imagef(current_image,
sampler,
coords+x1) -
read_imagef(current_image,
sampler,
coords-x1);
//Image 2 first
float4 grady = read_imagef(previous_image,
sampler,
coords+y1) -
read_imagef(previous_image,
sampler,
coords-y1);
//Image 1
grady += read_imagef(current_image,
sampler,
coords+y1) -
read_imagef(current_image,
sampler,
coords-y1);
float4 sqr = (gradx*gradx) + (grady*grady) +
(float4)(lambda,lambda, lambda, lambda);
float4 gradmag = sqrt(sqr);
///////////////////////////////////////////////////
float4 vx = curdif * (gradx / gradmag);
float vxd = vx.x;//assumes greyscale
//format output for flowrepos, out(-x,+x,-y,+y)
float2 xout = (float2)(fmax(vxd,0.f),fabs(fmin(vxd,0.f)));
xout *= scale;
///////////////////////////////////////////////////
float4 vy = curdif*(grady/gradmag);
float vyd = vy.x;//assumes greyscale
//format output for flowrepos, out(-x,+x,-y,+y)
float2 yout = (float2)(fmax(vyd,0.f),fabs(fmin(vyd,0.f)));
yout *= scale;
///////////////////////////////////////////////////
float4 out = (float4)(xout, yout);
float cond = (float)isgreaterequal(length(out), threshold);
out *= cond;
write_imagef(optical_flow, coords, out);
}
);
// This example shows how to read two images or use camera
// with OpenCV, transfer the frames to the GPU,
// and apply a naive optical flow algorithm
// written in OpenCL
int main(int argc, char *argv[])
{
// setup the command line arguments
po::options_description desc;
desc.add_options()
("help", "show available options")
("camera", po::value<int>()->default_value(-1),
"if not default camera, specify a camera id")
("image1", po::value<std::string>(), "path to image file 1")
("image2", po::value<std::string>(), "path to image file 2");
// Parse the command lines
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//check the command line arguments
if(vm.count("help"))
{
std::cout << desc << std::endl;
return 0;
}
//OpenCV variables
cv::Mat previous_cv_image;
cv::Mat current_cv_image;
cv::VideoCapture cap; //OpenCV camera handle
//check for image paths
if(vm.count("image1") && vm.count("image2"))
{
// Read image 1 with OpenCV
previous_cv_image = cv::imread(vm["image1"].as<std::string>(),
CV_LOAD_IMAGE_COLOR);
if(!previous_cv_image.data){
std::cerr << "Failed to load image" << std::endl;
return -1;
}
// Read image 2 with opencv
current_cv_image = cv::imread(vm["image2"].as<std::string>(),
CV_LOAD_IMAGE_COLOR);
if(!current_cv_image.data){
std::cerr << "Failed to load image" << std::endl;
return -1;
}
}
else //by default use camera
{
//open camera
cap.open(vm["camera"].as<int>());
// read first frame
cap >> previous_cv_image;
if(!previous_cv_image.data){
std::cerr << "failed to capture frame" << std::endl;
return -1;
}
// read second frame
cap >> current_cv_image;
if(!current_cv_image.data){
std::cerr << "failed to capture frame" << std::endl;
return -1;
}
}
// Get default device and setup context
compute::device gpu = compute::system::default_device();
compute::context context(gpu);
compute::command_queue queue(context, gpu);
// Convert image to BGRA (OpenCL requires 16-byte aligned data)
cv::cvtColor(previous_cv_image, previous_cv_image, CV_BGR2BGRA);
cv::cvtColor(current_cv_image, current_cv_image, CV_BGR2BGRA);
// Transfer image to gpu
compute::image2d dev_previous_image =
compute::opencv_create_image2d_with_mat(
previous_cv_image, compute::image2d::read_write, queue
);
// Transfer image to gpu
compute::image2d dev_current_image =
compute::opencv_create_image2d_with_mat(
current_cv_image, compute::image2d::read_write, queue
);
// Create output image
compute::image2d dev_output_image(
context,
dev_previous_image.width(),
dev_previous_image.height(),
dev_previous_image.format(),
compute::image2d::write_only
);
compute::program optical_program =
compute::program::create_with_source(source, context);
optical_program.build();
// create flip kernel and set arguments
compute::kernel optical_kernel(optical_program, "optical_flow");
float scale = 10;
float offset = 1;
float lambda = 0.0025;
float threshold = 1.0;
optical_kernel.set_arg(0, dev_previous_image);
optical_kernel.set_arg(1, dev_current_image);
optical_kernel.set_arg(2, dev_output_image);
optical_kernel.set_arg(3, scale);
optical_kernel.set_arg(4, offset);
optical_kernel.set_arg(5, lambda);
optical_kernel.set_arg(6, threshold);
// run flip kernel
size_t origin[2] = { 0, 0 };
size_t region[2] = { dev_previous_image.width(),
dev_previous_image.height() };
queue.enqueue_nd_range_kernel(optical_kernel, 2, origin, region, 0);
//check for image paths
if(vm.count("image1") && vm.count("image2"))
{
// show host image
cv::imshow("Previous Frame", previous_cv_image);
cv::imshow("Current Frame", current_cv_image);
// show gpu image
compute::opencv_imshow("filtered image", dev_output_image, queue);
// wait and return
cv::waitKey(0);
}
else
{
char key = '\0';
while(key != 27) //check for escape key
{
cap >> current_cv_image;
// Convert image to BGRA (OpenCL requires 16-byte aligned data)
cv::cvtColor(current_cv_image, current_cv_image, CV_BGR2BGRA);
// Update the device image memory with current frame data
compute::opencv_copy_mat_to_image(previous_cv_image,
dev_previous_image,
queue);
compute::opencv_copy_mat_to_image(current_cv_image,
dev_current_image,
queue);
// Run the kernel on the device
queue.enqueue_nd_range_kernel(optical_kernel, 2, origin, region, 0);
// Show host image
cv::imshow("Previous Frame", previous_cv_image);
cv::imshow("Current Frame", current_cv_image);
// Show GPU image
compute::opencv_imshow("filtered image", dev_output_image, queue);
// Copy current frame container to previous frame container
current_cv_image.copyTo(previous_cv_image);
// wait
key = cv::waitKey(10);
}
}
return 0;
}