AimRT/install_x64/include/unifex/new_thread_context.hpp
2025-01-12 19:51:34 +08:00

220 lines
6.0 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License Version 2.0 with LLVM Exceptions
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://llvm.org/LICENSE.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <unifex/get_stop_token.hpp>
#include <unifex/receiver_concepts.hpp>
#include <atomic>
#include <condition_variable>
#include <exception>
#include <mutex>
#include <thread>
#include <unifex/detail/prologue.hpp>
namespace unifex {
namespace _new_thread {
class context;
template <typename Receiver>
struct _op {
class type;
};
template <typename Receiver>
using operation = typename _op<remove_cvref_t<Receiver>>::type;
template <typename Receiver>
class _op<Receiver>::type final {
public:
template <typename Receiver2>
explicit type(context* ctx, Receiver2&& r)
: ctx_(ctx), receiver_((Receiver2&&)r) {}
~type() {
UNIFEX_ASSERT(!thread_.joinable());
}
void start() & noexcept;
private:
void run() noexcept;
context* ctx_;
Receiver receiver_;
std::mutex mut_;
std::thread thread_;
};
class context {
private:
template <class Receiver>
friend struct _op;
class schedule_sender {
public:
template <template <typename...> class Variant,
template <typename...> class Tuple>
using value_types = Variant<Tuple<>>;
template <template <typename...> class Variant>
using error_types = Variant<std::exception_ptr>;
static constexpr bool sends_done = true;
explicit schedule_sender(context* ctx) noexcept
: context_(ctx) {}
template <typename Receiver>
operation<Receiver> connect(Receiver&& r) const {
return operation<Receiver>{context_, (Receiver&&)r};
}
private:
context* context_;
};
class scheduler {
public:
explicit scheduler(context* ctx) noexcept : context_(ctx) {}
schedule_sender schedule() const noexcept {
return schedule_sender{context_};
}
friend bool operator==(scheduler a, scheduler b) noexcept {
return a.context_ == b.context_;
}
friend bool operator!=(scheduler a, scheduler b) noexcept {
return a.context_ != b.context_;
}
private:
context* context_;
};
public:
context() = default;
~context() {
// The activeThreadCount_ counter is initialised to 1 so it will never get to
// zero until after enter the destructor and decrement the last count here.
// We do this so that the retire_thread() call doesn't end up calling
// into the cv_.notify_one() until we are about to start waiting on the
// cv.
activeThreadCount_.fetch_sub(1, std::memory_order_relaxed);
std::unique_lock lk{mut_};
cv_.wait(lk, [this]() noexcept {
return activeThreadCount_.load(std::memory_order_relaxed) == 0;
});
if (threadToJoin_.joinable()) {
threadToJoin_.join();
}
}
scheduler get_scheduler() noexcept {
return scheduler{this};
}
private:
void retire_thread(std::thread t) noexcept {
std::thread prevThread;
{
std::lock_guard lk{mut_};
prevThread = std::exchange(threadToJoin_, std::move(t));
if (activeThreadCount_.fetch_sub(1, std::memory_order_relaxed) == 1) {
cv_.notify_one();
}
}
if (prevThread.joinable()) {
prevThread.join();
}
}
std::mutex mut_;
std::condition_variable cv_;
std::thread threadToJoin_;
std::atomic<size_t> activeThreadCount_ = 1;
};
template <typename Receiver>
inline void _op<Receiver>::type::start() & noexcept {
UNIFEX_TRY {
// Acquire the lock before launching the thread.
// This prevents the run() method from trying to read the thread_ variable
// until after we have finished assigning it.
//
// Note that this thread_ variable is private to this particular operation
// state and so will only be accessed by this start() method and the run()
// method.
std::lock_guard opLock{mut_};
thread_ = std::thread([this]() noexcept { this->run(); });
// Now that we've successfully launched the thread, increment the active
// thread count in the context. Do this before we release the lock so that
// we ensure the count increment happens before the count decrement that
// is performed when the thread is being retired.
ctx_->activeThreadCount_.fetch_add(1, std::memory_order_relaxed);
} UNIFEX_CATCH (...) {
unifex::set_error(std::move(receiver_), std::current_exception());
}
}
template <typename Receiver>
inline void _op<Receiver>::type::run() noexcept {
// Read the thread_ and ctx_ members out from the operation-state
// and store them as local variables on the stack before calling the
// receiver completion-signalling methods as the receiver methods
// will likely end up destroying the operation-state object before
// they return.
context* ctx = ctx_;
std::thread thisThread;
{
// Wait until we can acquire the mutex here.
// This ensures that the read of thread_ happens-after the write to thread_
// inside start().
//
// TODO: This can be replaced with an atomic<bool>::wait() once we have
// access to C++20 atomics. This would eliminate the unnecessary synchronisation
// performed by the unlock() at end-of-scope here.
std::lock_guard opLock{mut_};
thisThread = std::move(thread_);
}
if (get_stop_token(receiver_).stop_requested()) {
unifex::set_done(std::move(receiver_));
} else {
UNIFEX_TRY {
unifex::set_value(std::move(receiver_));
} UNIFEX_CATCH (...) {
unifex::set_error(std::move(receiver_), std::current_exception());
}
}
ctx->retire_thread(std::move(thisThread));
}
} // namespace _new_thread
using new_thread_context = _new_thread::context;
} // namespace unifex
#include <unifex/detail/epilogue.hpp>