1909 lines
84 KiB
C++
1909 lines
84 KiB
C++
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2008 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Author: kenton@google.com (Kenton Varda)
|
|
// atenasio@google.com (Chris Atenasio) (ZigZag transform)
|
|
// wink@google.com (Wink Saville) (refactored from wire_format.h)
|
|
// Based on original Protocol Buffers design by
|
|
// Sanjay Ghemawat, Jeff Dean, and others.
|
|
//
|
|
// This header is logically internal, but is made public because it is used
|
|
// from protocol-compiler-generated code, which may reside in other components.
|
|
|
|
#ifndef GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
|
|
#define GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
|
|
|
|
|
|
#include <limits>
|
|
#include <string>
|
|
|
|
#include <google/protobuf/stubs/common.h>
|
|
#include <google/protobuf/stubs/logging.h>
|
|
#include <google/protobuf/io/coded_stream.h>
|
|
#include <google/protobuf/port.h>
|
|
#include <google/protobuf/stubs/casts.h>
|
|
#include <google/protobuf/arenastring.h>
|
|
#include <google/protobuf/message_lite.h>
|
|
#include <google/protobuf/repeated_field.h>
|
|
|
|
// Do UTF-8 validation on string type in Debug build only
|
|
#ifndef NDEBUG
|
|
#define GOOGLE_PROTOBUF_UTF8_VALIDATION_ENABLED
|
|
#endif
|
|
|
|
// Avoid conflict with iOS where <ConditionalMacros.h> #defines TYPE_BOOL.
|
|
//
|
|
// If some one needs the macro TYPE_BOOL in a file that includes this header,
|
|
// it's possible to bring it back using push/pop_macro as follows.
|
|
//
|
|
// #pragma push_macro("TYPE_BOOL")
|
|
// #include this header and/or all headers that need the macro to be undefined.
|
|
// #pragma pop_macro("TYPE_BOOL")
|
|
#undef TYPE_BOOL
|
|
|
|
|
|
// Must be included last.
|
|
#include <google/protobuf/port_def.inc>
|
|
|
|
namespace google {
|
|
namespace protobuf {
|
|
namespace internal {
|
|
|
|
// This class is for internal use by the protocol buffer library and by
|
|
// protocol-compiler-generated message classes. It must not be called
|
|
// directly by clients.
|
|
//
|
|
// This class contains helpers for implementing the binary protocol buffer
|
|
// wire format without the need for reflection. Use WireFormat when using
|
|
// reflection.
|
|
//
|
|
// This class is really a namespace that contains only static methods.
|
|
class PROTOBUF_EXPORT WireFormatLite {
|
|
public:
|
|
// -----------------------------------------------------------------
|
|
// Helper constants and functions related to the format. These are
|
|
// mostly meant for internal and generated code to use.
|
|
|
|
// The wire format is composed of a sequence of tag/value pairs, each
|
|
// of which contains the value of one field (or one element of a repeated
|
|
// field). Each tag is encoded as a varint. The lower bits of the tag
|
|
// identify its wire type, which specifies the format of the data to follow.
|
|
// The rest of the bits contain the field number. Each type of field (as
|
|
// declared by FieldDescriptor::Type, in descriptor.h) maps to one of
|
|
// these wire types. Immediately following each tag is the field's value,
|
|
// encoded in the format specified by the wire type. Because the tag
|
|
// identifies the encoding of this data, it is possible to skip
|
|
// unrecognized fields for forwards compatibility.
|
|
|
|
enum WireType {
|
|
WIRETYPE_VARINT = 0,
|
|
WIRETYPE_FIXED64 = 1,
|
|
WIRETYPE_LENGTH_DELIMITED = 2,
|
|
WIRETYPE_START_GROUP = 3,
|
|
WIRETYPE_END_GROUP = 4,
|
|
WIRETYPE_FIXED32 = 5,
|
|
};
|
|
|
|
// Lite alternative to FieldDescriptor::Type. Must be kept in sync.
|
|
enum FieldType {
|
|
TYPE_DOUBLE = 1,
|
|
TYPE_FLOAT = 2,
|
|
TYPE_INT64 = 3,
|
|
TYPE_UINT64 = 4,
|
|
TYPE_INT32 = 5,
|
|
TYPE_FIXED64 = 6,
|
|
TYPE_FIXED32 = 7,
|
|
TYPE_BOOL = 8,
|
|
TYPE_STRING = 9,
|
|
TYPE_GROUP = 10,
|
|
TYPE_MESSAGE = 11,
|
|
TYPE_BYTES = 12,
|
|
TYPE_UINT32 = 13,
|
|
TYPE_ENUM = 14,
|
|
TYPE_SFIXED32 = 15,
|
|
TYPE_SFIXED64 = 16,
|
|
TYPE_SINT32 = 17,
|
|
TYPE_SINT64 = 18,
|
|
MAX_FIELD_TYPE = 18,
|
|
};
|
|
|
|
// Lite alternative to FieldDescriptor::CppType. Must be kept in sync.
|
|
enum CppType {
|
|
CPPTYPE_INT32 = 1,
|
|
CPPTYPE_INT64 = 2,
|
|
CPPTYPE_UINT32 = 3,
|
|
CPPTYPE_UINT64 = 4,
|
|
CPPTYPE_DOUBLE = 5,
|
|
CPPTYPE_FLOAT = 6,
|
|
CPPTYPE_BOOL = 7,
|
|
CPPTYPE_ENUM = 8,
|
|
CPPTYPE_STRING = 9,
|
|
CPPTYPE_MESSAGE = 10,
|
|
MAX_CPPTYPE = 10,
|
|
};
|
|
|
|
// Helper method to get the CppType for a particular Type.
|
|
static CppType FieldTypeToCppType(FieldType type);
|
|
|
|
// Given a FieldDescriptor::Type return its WireType
|
|
static inline WireFormatLite::WireType WireTypeForFieldType(
|
|
WireFormatLite::FieldType type) {
|
|
return kWireTypeForFieldType[type];
|
|
}
|
|
|
|
// Number of bits in a tag which identify the wire type.
|
|
static constexpr int kTagTypeBits = 3;
|
|
// Mask for those bits.
|
|
static constexpr uint32_t kTagTypeMask = (1 << kTagTypeBits) - 1;
|
|
|
|
// Helper functions for encoding and decoding tags. (Inlined below and in
|
|
// _inl.h)
|
|
//
|
|
// This is different from MakeTag(field->number(), field->type()) in the
|
|
// case of packed repeated fields.
|
|
constexpr static uint32_t MakeTag(int field_number, WireType type);
|
|
static WireType GetTagWireType(uint32_t tag);
|
|
static int GetTagFieldNumber(uint32_t tag);
|
|
|
|
// Compute the byte size of a tag. For groups, this includes both the start
|
|
// and end tags.
|
|
static inline size_t TagSize(int field_number,
|
|
WireFormatLite::FieldType type);
|
|
|
|
// Skips a field value with the given tag. The input should start
|
|
// positioned immediately after the tag. Skipped values are simply
|
|
// discarded, not recorded anywhere. See WireFormat::SkipField() for a
|
|
// version that records to an UnknownFieldSet.
|
|
static bool SkipField(io::CodedInputStream* input, uint32_t tag);
|
|
|
|
// Skips a field value with the given tag. The input should start
|
|
// positioned immediately after the tag. Skipped values are recorded to a
|
|
// CodedOutputStream.
|
|
static bool SkipField(io::CodedInputStream* input, uint32_t tag,
|
|
io::CodedOutputStream* output);
|
|
|
|
// Reads and ignores a message from the input. Skipped values are simply
|
|
// discarded, not recorded anywhere. See WireFormat::SkipMessage() for a
|
|
// version that records to an UnknownFieldSet.
|
|
static bool SkipMessage(io::CodedInputStream* input);
|
|
|
|
// Reads and ignores a message from the input. Skipped values are recorded
|
|
// to a CodedOutputStream.
|
|
static bool SkipMessage(io::CodedInputStream* input,
|
|
io::CodedOutputStream* output);
|
|
|
|
// This macro does the same thing as WireFormatLite::MakeTag(), but the
|
|
// result is usable as a compile-time constant, which makes it usable
|
|
// as a switch case or a template input. WireFormatLite::MakeTag() is more
|
|
// type-safe, though, so prefer it if possible.
|
|
#define GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(FIELD_NUMBER, TYPE) \
|
|
static_cast<uint32_t>((static_cast<uint32_t>(FIELD_NUMBER) << 3) | (TYPE))
|
|
|
|
// These are the tags for the old MessageSet format, which was defined as:
|
|
// message MessageSet {
|
|
// repeated group Item = 1 {
|
|
// required int32 type_id = 2;
|
|
// required string message = 3;
|
|
// }
|
|
// }
|
|
static constexpr int kMessageSetItemNumber = 1;
|
|
static constexpr int kMessageSetTypeIdNumber = 2;
|
|
static constexpr int kMessageSetMessageNumber = 3;
|
|
static const int kMessageSetItemStartTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
|
|
kMessageSetItemNumber, WireFormatLite::WIRETYPE_START_GROUP);
|
|
static const int kMessageSetItemEndTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
|
|
kMessageSetItemNumber, WireFormatLite::WIRETYPE_END_GROUP);
|
|
static const int kMessageSetTypeIdTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
|
|
kMessageSetTypeIdNumber, WireFormatLite::WIRETYPE_VARINT);
|
|
static const int kMessageSetMessageTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
|
|
kMessageSetMessageNumber, WireFormatLite::WIRETYPE_LENGTH_DELIMITED);
|
|
|
|
// Byte size of all tags of a MessageSet::Item combined.
|
|
static const size_t kMessageSetItemTagsSize;
|
|
|
|
// Helper functions for converting between floats/doubles and IEEE-754
|
|
// uint32s/uint64s so that they can be written. (Assumes your platform
|
|
// uses IEEE-754 floats.)
|
|
static uint32_t EncodeFloat(float value);
|
|
static float DecodeFloat(uint32_t value);
|
|
static uint64_t EncodeDouble(double value);
|
|
static double DecodeDouble(uint64_t value);
|
|
|
|
// Helper functions for mapping signed integers to unsigned integers in
|
|
// such a way that numbers with small magnitudes will encode to smaller
|
|
// varints. If you simply static_cast a negative number to an unsigned
|
|
// number and varint-encode it, it will always take 10 bytes, defeating
|
|
// the purpose of varint. So, for the "sint32" and "sint64" field types,
|
|
// we ZigZag-encode the values.
|
|
static uint32_t ZigZagEncode32(int32_t n);
|
|
static int32_t ZigZagDecode32(uint32_t n);
|
|
static uint64_t ZigZagEncode64(int64_t n);
|
|
static int64_t ZigZagDecode64(uint64_t n);
|
|
|
|
// =================================================================
|
|
// Methods for reading/writing individual field.
|
|
|
|
// Read fields, not including tags. The assumption is that you already
|
|
// read the tag to determine what field to read.
|
|
|
|
// For primitive fields, we just use a templatized routine parameterized by
|
|
// the represented type and the FieldType. These are specialized with the
|
|
// appropriate definition for each declared type.
|
|
template <typename CType, enum FieldType DeclaredType>
|
|
PROTOBUF_NDEBUG_INLINE static bool ReadPrimitive(io::CodedInputStream* input,
|
|
CType* value);
|
|
|
|
// Reads repeated primitive values, with optimizations for repeats.
|
|
// tag_size and tag should both be compile-time constants provided by the
|
|
// protocol compiler.
|
|
template <typename CType, enum FieldType DeclaredType>
|
|
PROTOBUF_NDEBUG_INLINE static bool ReadRepeatedPrimitive(
|
|
int tag_size, uint32_t tag, io::CodedInputStream* input,
|
|
RepeatedField<CType>* value);
|
|
|
|
// Identical to ReadRepeatedPrimitive, except will not inline the
|
|
// implementation.
|
|
template <typename CType, enum FieldType DeclaredType>
|
|
static bool ReadRepeatedPrimitiveNoInline(int tag_size, uint32_t tag,
|
|
io::CodedInputStream* input,
|
|
RepeatedField<CType>* value);
|
|
|
|
// Reads a primitive value directly from the provided buffer. It returns a
|
|
// pointer past the segment of data that was read.
|
|
//
|
|
// This is only implemented for the types with fixed wire size, e.g.
|
|
// float, double, and the (s)fixed* types.
|
|
template <typename CType, enum FieldType DeclaredType>
|
|
PROTOBUF_NDEBUG_INLINE static const uint8_t* ReadPrimitiveFromArray(
|
|
const uint8_t* buffer, CType* value);
|
|
|
|
// Reads a primitive packed field.
|
|
//
|
|
// This is only implemented for packable types.
|
|
template <typename CType, enum FieldType DeclaredType>
|
|
PROTOBUF_NDEBUG_INLINE static bool ReadPackedPrimitive(
|
|
io::CodedInputStream* input, RepeatedField<CType>* value);
|
|
|
|
// Identical to ReadPackedPrimitive, except will not inline the
|
|
// implementation.
|
|
template <typename CType, enum FieldType DeclaredType>
|
|
static bool ReadPackedPrimitiveNoInline(io::CodedInputStream* input,
|
|
RepeatedField<CType>* value);
|
|
|
|
// Read a packed enum field. If the is_valid function is not nullptr, values
|
|
// for which is_valid(value) returns false are silently dropped.
|
|
static bool ReadPackedEnumNoInline(io::CodedInputStream* input,
|
|
bool (*is_valid)(int),
|
|
RepeatedField<int>* values);
|
|
|
|
// Read a packed enum field. If the is_valid function is not nullptr, values
|
|
// for which is_valid(value) returns false are appended to
|
|
// unknown_fields_stream.
|
|
static bool ReadPackedEnumPreserveUnknowns(
|
|
io::CodedInputStream* input, int field_number, bool (*is_valid)(int),
|
|
io::CodedOutputStream* unknown_fields_stream, RepeatedField<int>* values);
|
|
|
|
// Read a string. ReadString(..., std::string* value) requires an
|
|
// existing std::string.
|
|
static inline bool ReadString(io::CodedInputStream* input,
|
|
std::string* value);
|
|
// ReadString(..., std::string** p) is internal-only, and should only be
|
|
// called from generated code. It starts by setting *p to "new std::string" if
|
|
// *p == &GetEmptyStringAlreadyInited(). It then invokes
|
|
// ReadString(io::CodedInputStream* input, *p). This is useful for reducing
|
|
// code size.
|
|
static inline bool ReadString(io::CodedInputStream* input, std::string** p);
|
|
// Analogous to ReadString().
|
|
static bool ReadBytes(io::CodedInputStream* input, std::string* value);
|
|
static bool ReadBytes(io::CodedInputStream* input, std::string** p);
|
|
|
|
enum Operation {
|
|
PARSE = 0,
|
|
SERIALIZE = 1,
|
|
};
|
|
|
|
// Returns true if the data is valid UTF-8.
|
|
static bool VerifyUtf8String(const char* data, int size, Operation op,
|
|
const char* field_name);
|
|
|
|
template <typename MessageType>
|
|
static inline bool ReadGroup(int field_number, io::CodedInputStream* input,
|
|
MessageType* value);
|
|
|
|
template <typename MessageType>
|
|
static inline bool ReadMessage(io::CodedInputStream* input,
|
|
MessageType* value);
|
|
|
|
template <typename MessageType>
|
|
static inline bool ReadMessageNoVirtual(io::CodedInputStream* input,
|
|
MessageType* value) {
|
|
return ReadMessage(input, value);
|
|
}
|
|
|
|
// Write a tag. The Write*() functions typically include the tag, so
|
|
// normally there's no need to call this unless using the Write*NoTag()
|
|
// variants.
|
|
PROTOBUF_NDEBUG_INLINE static void WriteTag(int field_number, WireType type,
|
|
io::CodedOutputStream* output);
|
|
|
|
// Write fields, without tags.
|
|
PROTOBUF_NDEBUG_INLINE static void WriteInt32NoTag(
|
|
int32_t value, io::CodedOutputStream* output);
|
|
PROTOBUF_NDEBUG_INLINE static void WriteInt64NoTag(
|
|
int64_t value, io::CodedOutputStream* output);
|
|
PROTOBUF_NDEBUG_INLINE static void WriteUInt32NoTag(
|
|
uint32_t value, io::CodedOutputStream* output);
|
|
PROTOBUF_NDEBUG_INLINE static void WriteUInt64NoTag(
|
|
uint64_t value, io::CodedOutputStream* output);
|
|
PROTOBUF_NDEBUG_INLINE static void WriteSInt32NoTag(
|
|
int32_t value, io::CodedOutputStream* output);
|
|
PROTOBUF_NDEBUG_INLINE static void WriteSInt64NoTag(
|
|
int64_t value, io::CodedOutputStream* output);
|
|
PROTOBUF_NDEBUG_INLINE static void WriteFixed32NoTag(
|
|
uint32_t value, io::CodedOutputStream* output);
|
|
PROTOBUF_NDEBUG_INLINE static void WriteFixed64NoTag(
|
|
uint64_t value, io::CodedOutputStream* output);
|
|
PROTOBUF_NDEBUG_INLINE static void WriteSFixed32NoTag(
|
|
int32_t value, io::CodedOutputStream* output);
|
|
PROTOBUF_NDEBUG_INLINE static void WriteSFixed64NoTag(
|
|
int64_t value, io::CodedOutputStream* output);
|
|
PROTOBUF_NDEBUG_INLINE static void WriteFloatNoTag(
|
|
float value, io::CodedOutputStream* output);
|
|
PROTOBUF_NDEBUG_INLINE static void WriteDoubleNoTag(
|
|
double value, io::CodedOutputStream* output);
|
|
PROTOBUF_NDEBUG_INLINE static void WriteBoolNoTag(
|
|
bool value, io::CodedOutputStream* output);
|
|
PROTOBUF_NDEBUG_INLINE static void WriteEnumNoTag(
|
|
int value, io::CodedOutputStream* output);
|
|
|
|
// Write array of primitive fields, without tags
|
|
static void WriteFloatArray(const float* a, int n,
|
|
io::CodedOutputStream* output);
|
|
static void WriteDoubleArray(const double* a, int n,
|
|
io::CodedOutputStream* output);
|
|
static void WriteFixed32Array(const uint32_t* a, int n,
|
|
io::CodedOutputStream* output);
|
|
static void WriteFixed64Array(const uint64_t* a, int n,
|
|
io::CodedOutputStream* output);
|
|
static void WriteSFixed32Array(const int32_t* a, int n,
|
|
io::CodedOutputStream* output);
|
|
static void WriteSFixed64Array(const int64_t* a, int n,
|
|
io::CodedOutputStream* output);
|
|
static void WriteBoolArray(const bool* a, int n,
|
|
io::CodedOutputStream* output);
|
|
|
|
// Write fields, including tags.
|
|
static void WriteInt32(int field_number, int32_t value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteInt64(int field_number, int64_t value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteUInt32(int field_number, uint32_t value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteUInt64(int field_number, uint64_t value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteSInt32(int field_number, int32_t value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteSInt64(int field_number, int64_t value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteFixed32(int field_number, uint32_t value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteFixed64(int field_number, uint64_t value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteSFixed32(int field_number, int32_t value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteSFixed64(int field_number, int64_t value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteFloat(int field_number, float value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteDouble(int field_number, double value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteBool(int field_number, bool value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteEnum(int field_number, int value,
|
|
io::CodedOutputStream* output);
|
|
|
|
static void WriteString(int field_number, const std::string& value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteBytes(int field_number, const std::string& value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteStringMaybeAliased(int field_number,
|
|
const std::string& value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteBytesMaybeAliased(int field_number, const std::string& value,
|
|
io::CodedOutputStream* output);
|
|
|
|
static void WriteGroup(int field_number, const MessageLite& value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteMessage(int field_number, const MessageLite& value,
|
|
io::CodedOutputStream* output);
|
|
// Like above, but these will check if the output stream has enough
|
|
// space to write directly to a flat array.
|
|
static void WriteGroupMaybeToArray(int field_number, const MessageLite& value,
|
|
io::CodedOutputStream* output);
|
|
static void WriteMessageMaybeToArray(int field_number,
|
|
const MessageLite& value,
|
|
io::CodedOutputStream* output);
|
|
|
|
// Like above, but de-virtualize the call to SerializeWithCachedSizes(). The
|
|
// pointer must point at an instance of MessageType, *not* a subclass (or
|
|
// the subclass must not override SerializeWithCachedSizes()).
|
|
template <typename MessageType>
|
|
static inline void WriteGroupNoVirtual(int field_number,
|
|
const MessageType& value,
|
|
io::CodedOutputStream* output);
|
|
template <typename MessageType>
|
|
static inline void WriteMessageNoVirtual(int field_number,
|
|
const MessageType& value,
|
|
io::CodedOutputStream* output);
|
|
|
|
// Like above, but use only *ToArray methods of CodedOutputStream.
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteTagToArray(int field_number,
|
|
WireType type,
|
|
uint8_t* target);
|
|
|
|
// Write fields, without tags.
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32NoTagToArray(
|
|
int32_t value, uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64NoTagToArray(
|
|
int64_t value, uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32NoTagToArray(
|
|
uint32_t value, uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64NoTagToArray(
|
|
uint64_t value, uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32NoTagToArray(
|
|
int32_t value, uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64NoTagToArray(
|
|
int64_t value, uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32NoTagToArray(
|
|
uint32_t value, uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64NoTagToArray(
|
|
uint64_t value, uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32NoTagToArray(
|
|
int32_t value, uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64NoTagToArray(
|
|
int64_t value, uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatNoTagToArray(
|
|
float value, uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleNoTagToArray(
|
|
double value, uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolNoTagToArray(bool value,
|
|
uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumNoTagToArray(int value,
|
|
uint8_t* target);
|
|
|
|
// Write fields, without tags. These require that value.size() > 0.
|
|
template <typename T>
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WritePrimitiveNoTagToArray(
|
|
const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*),
|
|
uint8_t* target);
|
|
template <typename T>
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixedNoTagToArray(
|
|
const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*),
|
|
uint8_t* target);
|
|
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32NoTagToArray(
|
|
const RepeatedField<int32_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64NoTagToArray(
|
|
const RepeatedField<int64_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32NoTagToArray(
|
|
const RepeatedField<uint32_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64NoTagToArray(
|
|
const RepeatedField<uint64_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32NoTagToArray(
|
|
const RepeatedField<int32_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64NoTagToArray(
|
|
const RepeatedField<int64_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32NoTagToArray(
|
|
const RepeatedField<uint32_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64NoTagToArray(
|
|
const RepeatedField<uint64_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32NoTagToArray(
|
|
const RepeatedField<int32_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64NoTagToArray(
|
|
const RepeatedField<int64_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatNoTagToArray(
|
|
const RepeatedField<float>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleNoTagToArray(
|
|
const RepeatedField<double>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolNoTagToArray(
|
|
const RepeatedField<bool>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumNoTagToArray(
|
|
const RepeatedField<int>& value, uint8_t* output);
|
|
|
|
// Write fields, including tags.
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32ToArray(int field_number,
|
|
int32_t value,
|
|
uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64ToArray(int field_number,
|
|
int64_t value,
|
|
uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32ToArray(int field_number,
|
|
uint32_t value,
|
|
uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64ToArray(int field_number,
|
|
uint64_t value,
|
|
uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32ToArray(int field_number,
|
|
int32_t value,
|
|
uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64ToArray(int field_number,
|
|
int64_t value,
|
|
uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32ToArray(int field_number,
|
|
uint32_t value,
|
|
uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64ToArray(int field_number,
|
|
uint64_t value,
|
|
uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32ToArray(int field_number,
|
|
int32_t value,
|
|
uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64ToArray(int field_number,
|
|
int64_t value,
|
|
uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatToArray(int field_number,
|
|
float value,
|
|
uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleToArray(int field_number,
|
|
double value,
|
|
uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolToArray(int field_number,
|
|
bool value,
|
|
uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumToArray(int field_number,
|
|
int value,
|
|
uint8_t* target);
|
|
|
|
template <typename T>
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WritePrimitiveToArray(
|
|
int field_number, const RepeatedField<T>& value,
|
|
uint8_t* (*Writer)(int, T, uint8_t*), uint8_t* target);
|
|
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32ToArray(
|
|
int field_number, const RepeatedField<int32_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64ToArray(
|
|
int field_number, const RepeatedField<int64_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32ToArray(
|
|
int field_number, const RepeatedField<uint32_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64ToArray(
|
|
int field_number, const RepeatedField<uint64_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32ToArray(
|
|
int field_number, const RepeatedField<int32_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64ToArray(
|
|
int field_number, const RepeatedField<int64_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32ToArray(
|
|
int field_number, const RepeatedField<uint32_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64ToArray(
|
|
int field_number, const RepeatedField<uint64_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32ToArray(
|
|
int field_number, const RepeatedField<int32_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64ToArray(
|
|
int field_number, const RepeatedField<int64_t>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatToArray(
|
|
int field_number, const RepeatedField<float>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleToArray(
|
|
int field_number, const RepeatedField<double>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolToArray(
|
|
int field_number, const RepeatedField<bool>& value, uint8_t* output);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumToArray(
|
|
int field_number, const RepeatedField<int>& value, uint8_t* output);
|
|
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteStringToArray(
|
|
int field_number, const std::string& value, uint8_t* target);
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBytesToArray(
|
|
int field_number, const std::string& value, uint8_t* target);
|
|
|
|
// Whether to serialize deterministically (e.g., map keys are
|
|
// sorted) is a property of a CodedOutputStream, and in the process
|
|
// of serialization, the "ToArray" variants may be invoked. But they don't
|
|
// have a CodedOutputStream available, so they get an additional parameter
|
|
// telling them whether to serialize deterministically.
|
|
static uint8_t* InternalWriteGroup(int field_number, const MessageLite& value,
|
|
uint8_t* target,
|
|
io::EpsCopyOutputStream* stream);
|
|
static uint8_t* InternalWriteMessage(int field_number,
|
|
const MessageLite& value,
|
|
int cached_size, uint8_t* target,
|
|
io::EpsCopyOutputStream* stream);
|
|
|
|
// Like above, but de-virtualize the call to SerializeWithCachedSizes(). The
|
|
// pointer must point at an instance of MessageType, *not* a subclass (or
|
|
// the subclass must not override SerializeWithCachedSizes()).
|
|
template <typename MessageType>
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* InternalWriteGroupNoVirtualToArray(
|
|
int field_number, const MessageType& value, uint8_t* target);
|
|
template <typename MessageType>
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* InternalWriteMessageNoVirtualToArray(
|
|
int field_number, const MessageType& value, uint8_t* target);
|
|
|
|
// For backward-compatibility, the last four methods also have versions
|
|
// that are non-deterministic always.
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteGroupToArray(
|
|
int field_number, const MessageLite& value, uint8_t* target) {
|
|
io::EpsCopyOutputStream stream(
|
|
target,
|
|
value.GetCachedSize() +
|
|
static_cast<int>(2 * io::CodedOutputStream::VarintSize32(
|
|
static_cast<uint32_t>(field_number) << 3)),
|
|
io::CodedOutputStream::IsDefaultSerializationDeterministic());
|
|
return InternalWriteGroup(field_number, value, target, &stream);
|
|
}
|
|
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteMessageToArray(
|
|
int field_number, const MessageLite& value, uint8_t* target) {
|
|
int size = value.GetCachedSize();
|
|
io::EpsCopyOutputStream stream(
|
|
target,
|
|
size + static_cast<int>(io::CodedOutputStream::VarintSize32(
|
|
static_cast<uint32_t>(field_number) << 3) +
|
|
io::CodedOutputStream::VarintSize32(size)),
|
|
io::CodedOutputStream::IsDefaultSerializationDeterministic());
|
|
return InternalWriteMessage(field_number, value, value.GetCachedSize(),
|
|
target, &stream);
|
|
}
|
|
|
|
// Compute the byte size of a field. The XxSize() functions do NOT include
|
|
// the tag, so you must also call TagSize(). (This is because, for repeated
|
|
// fields, you should only call TagSize() once and multiply it by the element
|
|
// count, but you may have to call XxSize() for each individual element.)
|
|
static inline size_t Int32Size(int32_t value);
|
|
static inline size_t Int64Size(int64_t value);
|
|
static inline size_t UInt32Size(uint32_t value);
|
|
static inline size_t UInt64Size(uint64_t value);
|
|
static inline size_t SInt32Size(int32_t value);
|
|
static inline size_t SInt64Size(int64_t value);
|
|
static inline size_t EnumSize(int value);
|
|
static inline size_t Int32SizePlusOne(int32_t value);
|
|
static inline size_t Int64SizePlusOne(int64_t value);
|
|
static inline size_t UInt32SizePlusOne(uint32_t value);
|
|
static inline size_t UInt64SizePlusOne(uint64_t value);
|
|
static inline size_t SInt32SizePlusOne(int32_t value);
|
|
static inline size_t SInt64SizePlusOne(int64_t value);
|
|
static inline size_t EnumSizePlusOne(int value);
|
|
|
|
static size_t Int32Size(const RepeatedField<int32_t>& value);
|
|
static size_t Int64Size(const RepeatedField<int64_t>& value);
|
|
static size_t UInt32Size(const RepeatedField<uint32_t>& value);
|
|
static size_t UInt64Size(const RepeatedField<uint64_t>& value);
|
|
static size_t SInt32Size(const RepeatedField<int32_t>& value);
|
|
static size_t SInt64Size(const RepeatedField<int64_t>& value);
|
|
static size_t EnumSize(const RepeatedField<int>& value);
|
|
|
|
// These types always have the same size.
|
|
static constexpr size_t kFixed32Size = 4;
|
|
static constexpr size_t kFixed64Size = 8;
|
|
static constexpr size_t kSFixed32Size = 4;
|
|
static constexpr size_t kSFixed64Size = 8;
|
|
static constexpr size_t kFloatSize = 4;
|
|
static constexpr size_t kDoubleSize = 8;
|
|
static constexpr size_t kBoolSize = 1;
|
|
|
|
static inline size_t StringSize(const std::string& value);
|
|
static inline size_t BytesSize(const std::string& value);
|
|
|
|
template <typename MessageType>
|
|
static inline size_t GroupSize(const MessageType& value);
|
|
template <typename MessageType>
|
|
static inline size_t MessageSize(const MessageType& value);
|
|
|
|
// Like above, but de-virtualize the call to ByteSize(). The
|
|
// pointer must point at an instance of MessageType, *not* a subclass (or
|
|
// the subclass must not override ByteSize()).
|
|
template <typename MessageType>
|
|
static inline size_t GroupSizeNoVirtual(const MessageType& value);
|
|
template <typename MessageType>
|
|
static inline size_t MessageSizeNoVirtual(const MessageType& value);
|
|
|
|
// Given the length of data, calculate the byte size of the data on the
|
|
// wire if we encode the data as a length delimited field.
|
|
static inline size_t LengthDelimitedSize(size_t length);
|
|
|
|
private:
|
|
// A helper method for the repeated primitive reader. This method has
|
|
// optimizations for primitive types that have fixed size on the wire, and
|
|
// can be read using potentially faster paths.
|
|
template <typename CType, enum FieldType DeclaredType>
|
|
PROTOBUF_NDEBUG_INLINE static bool ReadRepeatedFixedSizePrimitive(
|
|
int tag_size, uint32_t tag, io::CodedInputStream* input,
|
|
RepeatedField<CType>* value);
|
|
|
|
// Like ReadRepeatedFixedSizePrimitive but for packed primitive fields.
|
|
template <typename CType, enum FieldType DeclaredType>
|
|
PROTOBUF_NDEBUG_INLINE static bool ReadPackedFixedSizePrimitive(
|
|
io::CodedInputStream* input, RepeatedField<CType>* value);
|
|
|
|
static const CppType kFieldTypeToCppTypeMap[];
|
|
static const WireFormatLite::WireType kWireTypeForFieldType[];
|
|
static void WriteSubMessageMaybeToArray(int size, const MessageLite& value,
|
|
io::CodedOutputStream* output);
|
|
|
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(WireFormatLite);
|
|
};
|
|
|
|
// A class which deals with unknown values. The default implementation just
|
|
// discards them. WireFormat defines a subclass which writes to an
|
|
// UnknownFieldSet. This class is used by ExtensionSet::ParseField(), since
|
|
// ExtensionSet is part of the lite library but UnknownFieldSet is not.
|
|
class PROTOBUF_EXPORT FieldSkipper {
|
|
public:
|
|
FieldSkipper() {}
|
|
virtual ~FieldSkipper() {}
|
|
|
|
// Skip a field whose tag has already been consumed.
|
|
virtual bool SkipField(io::CodedInputStream* input, uint32_t tag);
|
|
|
|
// Skip an entire message or group, up to an end-group tag (which is consumed)
|
|
// or end-of-stream.
|
|
virtual bool SkipMessage(io::CodedInputStream* input);
|
|
|
|
// Deal with an already-parsed unrecognized enum value. The default
|
|
// implementation does nothing, but the UnknownFieldSet-based implementation
|
|
// saves it as an unknown varint.
|
|
virtual void SkipUnknownEnum(int field_number, int value);
|
|
};
|
|
|
|
// Subclass of FieldSkipper which saves skipped fields to a CodedOutputStream.
|
|
|
|
class PROTOBUF_EXPORT CodedOutputStreamFieldSkipper : public FieldSkipper {
|
|
public:
|
|
explicit CodedOutputStreamFieldSkipper(io::CodedOutputStream* unknown_fields)
|
|
: unknown_fields_(unknown_fields) {}
|
|
~CodedOutputStreamFieldSkipper() override {}
|
|
|
|
// implements FieldSkipper -----------------------------------------
|
|
bool SkipField(io::CodedInputStream* input, uint32_t tag) override;
|
|
bool SkipMessage(io::CodedInputStream* input) override;
|
|
void SkipUnknownEnum(int field_number, int value) override;
|
|
|
|
protected:
|
|
io::CodedOutputStream* unknown_fields_;
|
|
};
|
|
|
|
// inline methods ====================================================
|
|
|
|
inline WireFormatLite::CppType WireFormatLite::FieldTypeToCppType(
|
|
FieldType type) {
|
|
return kFieldTypeToCppTypeMap[type];
|
|
}
|
|
|
|
constexpr inline uint32_t WireFormatLite::MakeTag(int field_number,
|
|
WireType type) {
|
|
return GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(field_number, type);
|
|
}
|
|
|
|
inline WireFormatLite::WireType WireFormatLite::GetTagWireType(uint32_t tag) {
|
|
return static_cast<WireType>(tag & kTagTypeMask);
|
|
}
|
|
|
|
inline int WireFormatLite::GetTagFieldNumber(uint32_t tag) {
|
|
return static_cast<int>(tag >> kTagTypeBits);
|
|
}
|
|
|
|
inline size_t WireFormatLite::TagSize(int field_number,
|
|
WireFormatLite::FieldType type) {
|
|
size_t result = io::CodedOutputStream::VarintSize32(
|
|
static_cast<uint32_t>(field_number << kTagTypeBits));
|
|
if (type == TYPE_GROUP) {
|
|
// Groups have both a start and an end tag.
|
|
return result * 2;
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
inline uint32_t WireFormatLite::EncodeFloat(float value) {
|
|
return bit_cast<uint32_t>(value);
|
|
}
|
|
|
|
inline float WireFormatLite::DecodeFloat(uint32_t value) {
|
|
return bit_cast<float>(value);
|
|
}
|
|
|
|
inline uint64_t WireFormatLite::EncodeDouble(double value) {
|
|
return bit_cast<uint64_t>(value);
|
|
}
|
|
|
|
inline double WireFormatLite::DecodeDouble(uint64_t value) {
|
|
return bit_cast<double>(value);
|
|
}
|
|
|
|
// ZigZag Transform: Encodes signed integers so that they can be
|
|
// effectively used with varint encoding.
|
|
//
|
|
// varint operates on unsigned integers, encoding smaller numbers into
|
|
// fewer bytes. If you try to use it on a signed integer, it will treat
|
|
// this number as a very large unsigned integer, which means that even
|
|
// small signed numbers like -1 will take the maximum number of bytes
|
|
// (10) to encode. ZigZagEncode() maps signed integers to unsigned
|
|
// in such a way that those with a small absolute value will have smaller
|
|
// encoded values, making them appropriate for encoding using varint.
|
|
//
|
|
// int32_t -> uint32_t
|
|
// -------------------------
|
|
// 0 -> 0
|
|
// -1 -> 1
|
|
// 1 -> 2
|
|
// -2 -> 3
|
|
// ... -> ...
|
|
// 2147483647 -> 4294967294
|
|
// -2147483648 -> 4294967295
|
|
//
|
|
// >> encode >>
|
|
// << decode <<
|
|
|
|
inline uint32_t WireFormatLite::ZigZagEncode32(int32_t n) {
|
|
// Note: the right-shift must be arithmetic
|
|
// Note: left shift must be unsigned because of overflow
|
|
return (static_cast<uint32_t>(n) << 1) ^ static_cast<uint32_t>(n >> 31);
|
|
}
|
|
|
|
inline int32_t WireFormatLite::ZigZagDecode32(uint32_t n) {
|
|
// Note: Using unsigned types prevent undefined behavior
|
|
return static_cast<int32_t>((n >> 1) ^ (~(n & 1) + 1));
|
|
}
|
|
|
|
inline uint64_t WireFormatLite::ZigZagEncode64(int64_t n) {
|
|
// Note: the right-shift must be arithmetic
|
|
// Note: left shift must be unsigned because of overflow
|
|
return (static_cast<uint64_t>(n) << 1) ^ static_cast<uint64_t>(n >> 63);
|
|
}
|
|
|
|
inline int64_t WireFormatLite::ZigZagDecode64(uint64_t n) {
|
|
// Note: Using unsigned types prevent undefined behavior
|
|
return static_cast<int64_t>((n >> 1) ^ (~(n & 1) + 1));
|
|
}
|
|
|
|
// String is for UTF-8 text only, but, even so, ReadString() can simply
|
|
// call ReadBytes().
|
|
|
|
inline bool WireFormatLite::ReadString(io::CodedInputStream* input,
|
|
std::string* value) {
|
|
return ReadBytes(input, value);
|
|
}
|
|
|
|
inline bool WireFormatLite::ReadString(io::CodedInputStream* input,
|
|
std::string** p) {
|
|
return ReadBytes(input, p);
|
|
}
|
|
|
|
inline uint8_t* InternalSerializeUnknownMessageSetItemsToArray(
|
|
const std::string& unknown_fields, uint8_t* target,
|
|
io::EpsCopyOutputStream* stream) {
|
|
return stream->WriteRaw(unknown_fields.data(),
|
|
static_cast<int>(unknown_fields.size()), target);
|
|
}
|
|
|
|
inline size_t ComputeUnknownMessageSetItemsSize(
|
|
const std::string& unknown_fields) {
|
|
return unknown_fields.size();
|
|
}
|
|
|
|
// Implementation details of ReadPrimitive.
|
|
|
|
template <>
|
|
inline bool WireFormatLite::ReadPrimitive<int32_t, WireFormatLite::TYPE_INT32>(
|
|
io::CodedInputStream* input, int32_t* value) {
|
|
uint32_t temp;
|
|
if (!input->ReadVarint32(&temp)) return false;
|
|
*value = static_cast<int32_t>(temp);
|
|
return true;
|
|
}
|
|
template <>
|
|
inline bool WireFormatLite::ReadPrimitive<int64_t, WireFormatLite::TYPE_INT64>(
|
|
io::CodedInputStream* input, int64_t* value) {
|
|
uint64_t temp;
|
|
if (!input->ReadVarint64(&temp)) return false;
|
|
*value = static_cast<int64_t>(temp);
|
|
return true;
|
|
}
|
|
template <>
|
|
inline bool
|
|
WireFormatLite::ReadPrimitive<uint32_t, WireFormatLite::TYPE_UINT32>(
|
|
io::CodedInputStream* input, uint32_t* value) {
|
|
return input->ReadVarint32(value);
|
|
}
|
|
template <>
|
|
inline bool
|
|
WireFormatLite::ReadPrimitive<uint64_t, WireFormatLite::TYPE_UINT64>(
|
|
io::CodedInputStream* input, uint64_t* value) {
|
|
return input->ReadVarint64(value);
|
|
}
|
|
template <>
|
|
inline bool WireFormatLite::ReadPrimitive<int32_t, WireFormatLite::TYPE_SINT32>(
|
|
io::CodedInputStream* input, int32_t* value) {
|
|
uint32_t temp;
|
|
if (!input->ReadVarint32(&temp)) return false;
|
|
*value = ZigZagDecode32(temp);
|
|
return true;
|
|
}
|
|
template <>
|
|
inline bool WireFormatLite::ReadPrimitive<int64_t, WireFormatLite::TYPE_SINT64>(
|
|
io::CodedInputStream* input, int64_t* value) {
|
|
uint64_t temp;
|
|
if (!input->ReadVarint64(&temp)) return false;
|
|
*value = ZigZagDecode64(temp);
|
|
return true;
|
|
}
|
|
template <>
|
|
inline bool
|
|
WireFormatLite::ReadPrimitive<uint32_t, WireFormatLite::TYPE_FIXED32>(
|
|
io::CodedInputStream* input, uint32_t* value) {
|
|
return input->ReadLittleEndian32(value);
|
|
}
|
|
template <>
|
|
inline bool
|
|
WireFormatLite::ReadPrimitive<uint64_t, WireFormatLite::TYPE_FIXED64>(
|
|
io::CodedInputStream* input, uint64_t* value) {
|
|
return input->ReadLittleEndian64(value);
|
|
}
|
|
template <>
|
|
inline bool
|
|
WireFormatLite::ReadPrimitive<int32_t, WireFormatLite::TYPE_SFIXED32>(
|
|
io::CodedInputStream* input, int32_t* value) {
|
|
uint32_t temp;
|
|
if (!input->ReadLittleEndian32(&temp)) return false;
|
|
*value = static_cast<int32_t>(temp);
|
|
return true;
|
|
}
|
|
template <>
|
|
inline bool
|
|
WireFormatLite::ReadPrimitive<int64_t, WireFormatLite::TYPE_SFIXED64>(
|
|
io::CodedInputStream* input, int64_t* value) {
|
|
uint64_t temp;
|
|
if (!input->ReadLittleEndian64(&temp)) return false;
|
|
*value = static_cast<int64_t>(temp);
|
|
return true;
|
|
}
|
|
template <>
|
|
inline bool WireFormatLite::ReadPrimitive<float, WireFormatLite::TYPE_FLOAT>(
|
|
io::CodedInputStream* input, float* value) {
|
|
uint32_t temp;
|
|
if (!input->ReadLittleEndian32(&temp)) return false;
|
|
*value = DecodeFloat(temp);
|
|
return true;
|
|
}
|
|
template <>
|
|
inline bool WireFormatLite::ReadPrimitive<double, WireFormatLite::TYPE_DOUBLE>(
|
|
io::CodedInputStream* input, double* value) {
|
|
uint64_t temp;
|
|
if (!input->ReadLittleEndian64(&temp)) return false;
|
|
*value = DecodeDouble(temp);
|
|
return true;
|
|
}
|
|
template <>
|
|
inline bool WireFormatLite::ReadPrimitive<bool, WireFormatLite::TYPE_BOOL>(
|
|
io::CodedInputStream* input, bool* value) {
|
|
uint64_t temp;
|
|
if (!input->ReadVarint64(&temp)) return false;
|
|
*value = temp != 0;
|
|
return true;
|
|
}
|
|
template <>
|
|
inline bool WireFormatLite::ReadPrimitive<int, WireFormatLite::TYPE_ENUM>(
|
|
io::CodedInputStream* input, int* value) {
|
|
uint32_t temp;
|
|
if (!input->ReadVarint32(&temp)) return false;
|
|
*value = static_cast<int>(temp);
|
|
return true;
|
|
}
|
|
|
|
template <>
|
|
inline const uint8_t*
|
|
WireFormatLite::ReadPrimitiveFromArray<uint32_t, WireFormatLite::TYPE_FIXED32>(
|
|
const uint8_t* buffer, uint32_t* value) {
|
|
return io::CodedInputStream::ReadLittleEndian32FromArray(buffer, value);
|
|
}
|
|
template <>
|
|
inline const uint8_t*
|
|
WireFormatLite::ReadPrimitiveFromArray<uint64_t, WireFormatLite::TYPE_FIXED64>(
|
|
const uint8_t* buffer, uint64_t* value) {
|
|
return io::CodedInputStream::ReadLittleEndian64FromArray(buffer, value);
|
|
}
|
|
template <>
|
|
inline const uint8_t*
|
|
WireFormatLite::ReadPrimitiveFromArray<int32_t, WireFormatLite::TYPE_SFIXED32>(
|
|
const uint8_t* buffer, int32_t* value) {
|
|
uint32_t temp;
|
|
buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, &temp);
|
|
*value = static_cast<int32_t>(temp);
|
|
return buffer;
|
|
}
|
|
template <>
|
|
inline const uint8_t*
|
|
WireFormatLite::ReadPrimitiveFromArray<int64_t, WireFormatLite::TYPE_SFIXED64>(
|
|
const uint8_t* buffer, int64_t* value) {
|
|
uint64_t temp;
|
|
buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, &temp);
|
|
*value = static_cast<int64_t>(temp);
|
|
return buffer;
|
|
}
|
|
template <>
|
|
inline const uint8_t*
|
|
WireFormatLite::ReadPrimitiveFromArray<float, WireFormatLite::TYPE_FLOAT>(
|
|
const uint8_t* buffer, float* value) {
|
|
uint32_t temp;
|
|
buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, &temp);
|
|
*value = DecodeFloat(temp);
|
|
return buffer;
|
|
}
|
|
template <>
|
|
inline const uint8_t*
|
|
WireFormatLite::ReadPrimitiveFromArray<double, WireFormatLite::TYPE_DOUBLE>(
|
|
const uint8_t* buffer, double* value) {
|
|
uint64_t temp;
|
|
buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, &temp);
|
|
*value = DecodeDouble(temp);
|
|
return buffer;
|
|
}
|
|
|
|
template <typename CType, enum WireFormatLite::FieldType DeclaredType>
|
|
inline bool WireFormatLite::ReadRepeatedPrimitive(
|
|
int, // tag_size, unused.
|
|
uint32_t tag, io::CodedInputStream* input, RepeatedField<CType>* values) {
|
|
CType value;
|
|
if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
|
|
values->Add(value);
|
|
int elements_already_reserved = values->Capacity() - values->size();
|
|
while (elements_already_reserved > 0 && input->ExpectTag(tag)) {
|
|
if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
|
|
values->AddAlreadyReserved(value);
|
|
elements_already_reserved--;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename CType, enum WireFormatLite::FieldType DeclaredType>
|
|
inline bool WireFormatLite::ReadRepeatedFixedSizePrimitive(
|
|
int tag_size, uint32_t tag, io::CodedInputStream* input,
|
|
RepeatedField<CType>* values) {
|
|
GOOGLE_DCHECK_EQ(UInt32Size(tag), static_cast<size_t>(tag_size));
|
|
CType value;
|
|
if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
|
|
values->Add(value);
|
|
|
|
// For fixed size values, repeated values can be read more quickly by
|
|
// reading directly from a raw array.
|
|
//
|
|
// We can get a tight loop by only reading as many elements as can be
|
|
// added to the RepeatedField without having to do any resizing. Additionally,
|
|
// we only try to read as many elements as are available from the current
|
|
// buffer space. Doing so avoids having to perform boundary checks when
|
|
// reading the value: the maximum number of elements that can be read is
|
|
// known outside of the loop.
|
|
const void* void_pointer;
|
|
int size;
|
|
input->GetDirectBufferPointerInline(&void_pointer, &size);
|
|
if (size > 0) {
|
|
const uint8_t* buffer = reinterpret_cast<const uint8_t*>(void_pointer);
|
|
// The number of bytes each type occupies on the wire.
|
|
const int per_value_size = tag_size + static_cast<int>(sizeof(value));
|
|
|
|
// parentheses around (std::min) prevents macro expansion of min(...)
|
|
int elements_available =
|
|
(std::min)(values->Capacity() - values->size(), size / per_value_size);
|
|
int num_read = 0;
|
|
while (num_read < elements_available &&
|
|
(buffer = io::CodedInputStream::ExpectTagFromArray(buffer, tag)) !=
|
|
nullptr) {
|
|
buffer = ReadPrimitiveFromArray<CType, DeclaredType>(buffer, &value);
|
|
values->AddAlreadyReserved(value);
|
|
++num_read;
|
|
}
|
|
const int read_bytes = num_read * per_value_size;
|
|
if (read_bytes > 0) {
|
|
input->Skip(read_bytes);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Specializations of ReadRepeatedPrimitive for the fixed size types, which use
|
|
// the optimized code path.
|
|
#define READ_REPEATED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \
|
|
template <> \
|
|
inline bool WireFormatLite::ReadRepeatedPrimitive< \
|
|
CPPTYPE, WireFormatLite::DECLARED_TYPE>( \
|
|
int tag_size, uint32_t tag, io::CodedInputStream* input, \
|
|
RepeatedField<CPPTYPE>* values) { \
|
|
return ReadRepeatedFixedSizePrimitive<CPPTYPE, \
|
|
WireFormatLite::DECLARED_TYPE>( \
|
|
tag_size, tag, input, values); \
|
|
}
|
|
|
|
READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint32_t, TYPE_FIXED32)
|
|
READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint64_t, TYPE_FIXED64)
|
|
READ_REPEATED_FIXED_SIZE_PRIMITIVE(int32_t, TYPE_SFIXED32)
|
|
READ_REPEATED_FIXED_SIZE_PRIMITIVE(int64_t, TYPE_SFIXED64)
|
|
READ_REPEATED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT)
|
|
READ_REPEATED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE)
|
|
|
|
#undef READ_REPEATED_FIXED_SIZE_PRIMITIVE
|
|
|
|
template <typename CType, enum WireFormatLite::FieldType DeclaredType>
|
|
bool WireFormatLite::ReadRepeatedPrimitiveNoInline(
|
|
int tag_size, uint32_t tag, io::CodedInputStream* input,
|
|
RepeatedField<CType>* value) {
|
|
return ReadRepeatedPrimitive<CType, DeclaredType>(tag_size, tag, input,
|
|
value);
|
|
}
|
|
|
|
template <typename CType, enum WireFormatLite::FieldType DeclaredType>
|
|
inline bool WireFormatLite::ReadPackedPrimitive(io::CodedInputStream* input,
|
|
RepeatedField<CType>* values) {
|
|
int length;
|
|
if (!input->ReadVarintSizeAsInt(&length)) return false;
|
|
io::CodedInputStream::Limit limit = input->PushLimit(length);
|
|
while (input->BytesUntilLimit() > 0) {
|
|
CType value;
|
|
if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
|
|
values->Add(value);
|
|
}
|
|
input->PopLimit(limit);
|
|
return true;
|
|
}
|
|
|
|
template <typename CType, enum WireFormatLite::FieldType DeclaredType>
|
|
inline bool WireFormatLite::ReadPackedFixedSizePrimitive(
|
|
io::CodedInputStream* input, RepeatedField<CType>* values) {
|
|
int length;
|
|
if (!input->ReadVarintSizeAsInt(&length)) return false;
|
|
const int old_entries = values->size();
|
|
const int new_entries = length / static_cast<int>(sizeof(CType));
|
|
const int new_bytes = new_entries * static_cast<int>(sizeof(CType));
|
|
if (new_bytes != length) return false;
|
|
// We would *like* to pre-allocate the buffer to write into (for
|
|
// speed), but *must* avoid performing a very large allocation due
|
|
// to a malicious user-supplied "length" above. So we have a fast
|
|
// path that pre-allocates when the "length" is less than a bound.
|
|
// We determine the bound by calling BytesUntilTotalBytesLimit() and
|
|
// BytesUntilLimit(). These return -1 to mean "no limit set".
|
|
// There are four cases:
|
|
// TotalBytesLimit Limit
|
|
// -1 -1 Use slow path.
|
|
// -1 >= 0 Use fast path if length <= Limit.
|
|
// >= 0 -1 Use slow path.
|
|
// >= 0 >= 0 Use fast path if length <= min(both limits).
|
|
int64_t bytes_limit = input->BytesUntilTotalBytesLimit();
|
|
if (bytes_limit == -1) {
|
|
bytes_limit = input->BytesUntilLimit();
|
|
} else {
|
|
// parentheses around (std::min) prevents macro expansion of min(...)
|
|
bytes_limit =
|
|
(std::min)(bytes_limit, static_cast<int64_t>(input->BytesUntilLimit()));
|
|
}
|
|
if (bytes_limit >= new_bytes) {
|
|
// Fast-path that pre-allocates *values to the final size.
|
|
#if defined(PROTOBUF_LITTLE_ENDIAN)
|
|
values->Resize(old_entries + new_entries, 0);
|
|
// values->mutable_data() may change after Resize(), so do this after:
|
|
void* dest = reinterpret_cast<void*>(values->mutable_data() + old_entries);
|
|
if (!input->ReadRaw(dest, new_bytes)) {
|
|
values->Truncate(old_entries);
|
|
return false;
|
|
}
|
|
#else
|
|
values->Reserve(old_entries + new_entries);
|
|
CType value;
|
|
for (int i = 0; i < new_entries; ++i) {
|
|
if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
|
|
values->AddAlreadyReserved(value);
|
|
}
|
|
#endif
|
|
} else {
|
|
// This is the slow-path case where "length" may be too large to
|
|
// safely allocate. We read as much as we can into *values
|
|
// without pre-allocating "length" bytes.
|
|
CType value;
|
|
for (int i = 0; i < new_entries; ++i) {
|
|
if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
|
|
values->Add(value);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Specializations of ReadPackedPrimitive for the fixed size types, which use
|
|
// an optimized code path.
|
|
#define READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \
|
|
template <> \
|
|
inline bool \
|
|
WireFormatLite::ReadPackedPrimitive<CPPTYPE, WireFormatLite::DECLARED_TYPE>( \
|
|
io::CodedInputStream * input, RepeatedField<CPPTYPE> * values) { \
|
|
return ReadPackedFixedSizePrimitive<CPPTYPE, \
|
|
WireFormatLite::DECLARED_TYPE>( \
|
|
input, values); \
|
|
}
|
|
|
|
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint32_t, TYPE_FIXED32)
|
|
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint64_t, TYPE_FIXED64)
|
|
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int32_t, TYPE_SFIXED32)
|
|
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int64_t, TYPE_SFIXED64)
|
|
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT)
|
|
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE)
|
|
|
|
#undef READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE
|
|
|
|
template <typename CType, enum WireFormatLite::FieldType DeclaredType>
|
|
bool WireFormatLite::ReadPackedPrimitiveNoInline(io::CodedInputStream* input,
|
|
RepeatedField<CType>* values) {
|
|
return ReadPackedPrimitive<CType, DeclaredType>(input, values);
|
|
}
|
|
|
|
|
|
template <typename MessageType>
|
|
inline bool WireFormatLite::ReadGroup(int field_number,
|
|
io::CodedInputStream* input,
|
|
MessageType* value) {
|
|
if (!input->IncrementRecursionDepth()) return false;
|
|
if (!value->MergePartialFromCodedStream(input)) return false;
|
|
input->UnsafeDecrementRecursionDepth();
|
|
// Make sure the last thing read was an end tag for this group.
|
|
if (!input->LastTagWas(MakeTag(field_number, WIRETYPE_END_GROUP))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
template <typename MessageType>
|
|
inline bool WireFormatLite::ReadMessage(io::CodedInputStream* input,
|
|
MessageType* value) {
|
|
int length;
|
|
if (!input->ReadVarintSizeAsInt(&length)) return false;
|
|
std::pair<io::CodedInputStream::Limit, int> p =
|
|
input->IncrementRecursionDepthAndPushLimit(length);
|
|
if (p.second < 0 || !value->MergePartialFromCodedStream(input)) return false;
|
|
// Make sure that parsing stopped when the limit was hit, not at an endgroup
|
|
// tag.
|
|
return input->DecrementRecursionDepthAndPopLimit(p.first);
|
|
}
|
|
|
|
// ===================================================================
|
|
|
|
inline void WireFormatLite::WriteTag(int field_number, WireType type,
|
|
io::CodedOutputStream* output) {
|
|
output->WriteTag(MakeTag(field_number, type));
|
|
}
|
|
|
|
inline void WireFormatLite::WriteInt32NoTag(int32_t value,
|
|
io::CodedOutputStream* output) {
|
|
output->WriteVarint32SignExtended(value);
|
|
}
|
|
inline void WireFormatLite::WriteInt64NoTag(int64_t value,
|
|
io::CodedOutputStream* output) {
|
|
output->WriteVarint64(static_cast<uint64_t>(value));
|
|
}
|
|
inline void WireFormatLite::WriteUInt32NoTag(uint32_t value,
|
|
io::CodedOutputStream* output) {
|
|
output->WriteVarint32(value);
|
|
}
|
|
inline void WireFormatLite::WriteUInt64NoTag(uint64_t value,
|
|
io::CodedOutputStream* output) {
|
|
output->WriteVarint64(value);
|
|
}
|
|
inline void WireFormatLite::WriteSInt32NoTag(int32_t value,
|
|
io::CodedOutputStream* output) {
|
|
output->WriteVarint32(ZigZagEncode32(value));
|
|
}
|
|
inline void WireFormatLite::WriteSInt64NoTag(int64_t value,
|
|
io::CodedOutputStream* output) {
|
|
output->WriteVarint64(ZigZagEncode64(value));
|
|
}
|
|
inline void WireFormatLite::WriteFixed32NoTag(uint32_t value,
|
|
io::CodedOutputStream* output) {
|
|
output->WriteLittleEndian32(value);
|
|
}
|
|
inline void WireFormatLite::WriteFixed64NoTag(uint64_t value,
|
|
io::CodedOutputStream* output) {
|
|
output->WriteLittleEndian64(value);
|
|
}
|
|
inline void WireFormatLite::WriteSFixed32NoTag(int32_t value,
|
|
io::CodedOutputStream* output) {
|
|
output->WriteLittleEndian32(static_cast<uint32_t>(value));
|
|
}
|
|
inline void WireFormatLite::WriteSFixed64NoTag(int64_t value,
|
|
io::CodedOutputStream* output) {
|
|
output->WriteLittleEndian64(static_cast<uint64_t>(value));
|
|
}
|
|
inline void WireFormatLite::WriteFloatNoTag(float value,
|
|
io::CodedOutputStream* output) {
|
|
output->WriteLittleEndian32(EncodeFloat(value));
|
|
}
|
|
inline void WireFormatLite::WriteDoubleNoTag(double value,
|
|
io::CodedOutputStream* output) {
|
|
output->WriteLittleEndian64(EncodeDouble(value));
|
|
}
|
|
inline void WireFormatLite::WriteBoolNoTag(bool value,
|
|
io::CodedOutputStream* output) {
|
|
output->WriteVarint32(value ? 1 : 0);
|
|
}
|
|
inline void WireFormatLite::WriteEnumNoTag(int value,
|
|
io::CodedOutputStream* output) {
|
|
output->WriteVarint32SignExtended(value);
|
|
}
|
|
|
|
// See comment on ReadGroupNoVirtual to understand the need for this template
|
|
// parameter name.
|
|
template <typename MessageType_WorkAroundCppLookupDefect>
|
|
inline void WireFormatLite::WriteGroupNoVirtual(
|
|
int field_number, const MessageType_WorkAroundCppLookupDefect& value,
|
|
io::CodedOutputStream* output) {
|
|
WriteTag(field_number, WIRETYPE_START_GROUP, output);
|
|
value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output);
|
|
WriteTag(field_number, WIRETYPE_END_GROUP, output);
|
|
}
|
|
template <typename MessageType_WorkAroundCppLookupDefect>
|
|
inline void WireFormatLite::WriteMessageNoVirtual(
|
|
int field_number, const MessageType_WorkAroundCppLookupDefect& value,
|
|
io::CodedOutputStream* output) {
|
|
WriteTag(field_number, WIRETYPE_LENGTH_DELIMITED, output);
|
|
output->WriteVarint32(
|
|
value.MessageType_WorkAroundCppLookupDefect::GetCachedSize());
|
|
value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output);
|
|
}
|
|
|
|
// ===================================================================
|
|
|
|
inline uint8_t* WireFormatLite::WriteTagToArray(int field_number, WireType type,
|
|
uint8_t* target) {
|
|
return io::CodedOutputStream::WriteTagToArray(MakeTag(field_number, type),
|
|
target);
|
|
}
|
|
|
|
inline uint8_t* WireFormatLite::WriteInt32NoTagToArray(int32_t value,
|
|
uint8_t* target) {
|
|
return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteInt64NoTagToArray(int64_t value,
|
|
uint8_t* target) {
|
|
return io::CodedOutputStream::WriteVarint64ToArray(
|
|
static_cast<uint64_t>(value), target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteUInt32NoTagToArray(uint32_t value,
|
|
uint8_t* target) {
|
|
return io::CodedOutputStream::WriteVarint32ToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteUInt64NoTagToArray(uint64_t value,
|
|
uint8_t* target) {
|
|
return io::CodedOutputStream::WriteVarint64ToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSInt32NoTagToArray(int32_t value,
|
|
uint8_t* target) {
|
|
return io::CodedOutputStream::WriteVarint32ToArray(ZigZagEncode32(value),
|
|
target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSInt64NoTagToArray(int64_t value,
|
|
uint8_t* target) {
|
|
return io::CodedOutputStream::WriteVarint64ToArray(ZigZagEncode64(value),
|
|
target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteFixed32NoTagToArray(uint32_t value,
|
|
uint8_t* target) {
|
|
return io::CodedOutputStream::WriteLittleEndian32ToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteFixed64NoTagToArray(uint64_t value,
|
|
uint8_t* target) {
|
|
return io::CodedOutputStream::WriteLittleEndian64ToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSFixed32NoTagToArray(int32_t value,
|
|
uint8_t* target) {
|
|
return io::CodedOutputStream::WriteLittleEndian32ToArray(
|
|
static_cast<uint32_t>(value), target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSFixed64NoTagToArray(int64_t value,
|
|
uint8_t* target) {
|
|
return io::CodedOutputStream::WriteLittleEndian64ToArray(
|
|
static_cast<uint64_t>(value), target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteFloatNoTagToArray(float value,
|
|
uint8_t* target) {
|
|
return io::CodedOutputStream::WriteLittleEndian32ToArray(EncodeFloat(value),
|
|
target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteDoubleNoTagToArray(double value,
|
|
uint8_t* target) {
|
|
return io::CodedOutputStream::WriteLittleEndian64ToArray(EncodeDouble(value),
|
|
target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteBoolNoTagToArray(bool value,
|
|
uint8_t* target) {
|
|
return io::CodedOutputStream::WriteVarint32ToArray(value ? 1 : 0, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteEnumNoTagToArray(int value,
|
|
uint8_t* target) {
|
|
return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target);
|
|
}
|
|
|
|
template <typename T>
|
|
inline uint8_t* WireFormatLite::WritePrimitiveNoTagToArray(
|
|
const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*),
|
|
uint8_t* target) {
|
|
const int n = value.size();
|
|
GOOGLE_DCHECK_GT(n, 0);
|
|
|
|
const T* ii = value.data();
|
|
int i = 0;
|
|
do {
|
|
target = Writer(ii[i], target);
|
|
} while (++i < n);
|
|
|
|
return target;
|
|
}
|
|
|
|
template <typename T>
|
|
inline uint8_t* WireFormatLite::WriteFixedNoTagToArray(
|
|
const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*),
|
|
uint8_t* target) {
|
|
#if defined(PROTOBUF_LITTLE_ENDIAN)
|
|
(void)Writer;
|
|
|
|
const int n = value.size();
|
|
GOOGLE_DCHECK_GT(n, 0);
|
|
|
|
const T* ii = value.data();
|
|
const int bytes = n * static_cast<int>(sizeof(ii[0]));
|
|
memcpy(target, ii, static_cast<size_t>(bytes));
|
|
return target + bytes;
|
|
#else
|
|
return WritePrimitiveNoTagToArray(value, Writer, target);
|
|
#endif
|
|
}
|
|
|
|
inline uint8_t* WireFormatLite::WriteInt32NoTagToArray(
|
|
const RepeatedField<int32_t>& value, uint8_t* target) {
|
|
return WritePrimitiveNoTagToArray(value, WriteInt32NoTagToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteInt64NoTagToArray(
|
|
const RepeatedField<int64_t>& value, uint8_t* target) {
|
|
return WritePrimitiveNoTagToArray(value, WriteInt64NoTagToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteUInt32NoTagToArray(
|
|
const RepeatedField<uint32_t>& value, uint8_t* target) {
|
|
return WritePrimitiveNoTagToArray(value, WriteUInt32NoTagToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteUInt64NoTagToArray(
|
|
const RepeatedField<uint64_t>& value, uint8_t* target) {
|
|
return WritePrimitiveNoTagToArray(value, WriteUInt64NoTagToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSInt32NoTagToArray(
|
|
const RepeatedField<int32_t>& value, uint8_t* target) {
|
|
return WritePrimitiveNoTagToArray(value, WriteSInt32NoTagToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSInt64NoTagToArray(
|
|
const RepeatedField<int64_t>& value, uint8_t* target) {
|
|
return WritePrimitiveNoTagToArray(value, WriteSInt64NoTagToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteFixed32NoTagToArray(
|
|
const RepeatedField<uint32_t>& value, uint8_t* target) {
|
|
return WriteFixedNoTagToArray(value, WriteFixed32NoTagToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteFixed64NoTagToArray(
|
|
const RepeatedField<uint64_t>& value, uint8_t* target) {
|
|
return WriteFixedNoTagToArray(value, WriteFixed64NoTagToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSFixed32NoTagToArray(
|
|
const RepeatedField<int32_t>& value, uint8_t* target) {
|
|
return WriteFixedNoTagToArray(value, WriteSFixed32NoTagToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSFixed64NoTagToArray(
|
|
const RepeatedField<int64_t>& value, uint8_t* target) {
|
|
return WriteFixedNoTagToArray(value, WriteSFixed64NoTagToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteFloatNoTagToArray(
|
|
const RepeatedField<float>& value, uint8_t* target) {
|
|
return WriteFixedNoTagToArray(value, WriteFloatNoTagToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteDoubleNoTagToArray(
|
|
const RepeatedField<double>& value, uint8_t* target) {
|
|
return WriteFixedNoTagToArray(value, WriteDoubleNoTagToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteBoolNoTagToArray(
|
|
const RepeatedField<bool>& value, uint8_t* target) {
|
|
return WritePrimitiveNoTagToArray(value, WriteBoolNoTagToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteEnumNoTagToArray(
|
|
const RepeatedField<int>& value, uint8_t* target) {
|
|
return WritePrimitiveNoTagToArray(value, WriteEnumNoTagToArray, target);
|
|
}
|
|
|
|
inline uint8_t* WireFormatLite::WriteInt32ToArray(int field_number,
|
|
int32_t value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
|
|
return WriteInt32NoTagToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteInt64ToArray(int field_number,
|
|
int64_t value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
|
|
return WriteInt64NoTagToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteUInt32ToArray(int field_number,
|
|
uint32_t value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
|
|
return WriteUInt32NoTagToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteUInt64ToArray(int field_number,
|
|
uint64_t value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
|
|
return WriteUInt64NoTagToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSInt32ToArray(int field_number,
|
|
int32_t value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
|
|
return WriteSInt32NoTagToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSInt64ToArray(int field_number,
|
|
int64_t value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
|
|
return WriteSInt64NoTagToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteFixed32ToArray(int field_number,
|
|
uint32_t value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target);
|
|
return WriteFixed32NoTagToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteFixed64ToArray(int field_number,
|
|
uint64_t value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target);
|
|
return WriteFixed64NoTagToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSFixed32ToArray(int field_number,
|
|
int32_t value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target);
|
|
return WriteSFixed32NoTagToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSFixed64ToArray(int field_number,
|
|
int64_t value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target);
|
|
return WriteSFixed64NoTagToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteFloatToArray(int field_number, float value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target);
|
|
return WriteFloatNoTagToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteDoubleToArray(int field_number,
|
|
double value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target);
|
|
return WriteDoubleNoTagToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteBoolToArray(int field_number, bool value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
|
|
return WriteBoolNoTagToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteEnumToArray(int field_number, int value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
|
|
return WriteEnumNoTagToArray(value, target);
|
|
}
|
|
|
|
template <typename T>
|
|
inline uint8_t* WireFormatLite::WritePrimitiveToArray(
|
|
int field_number, const RepeatedField<T>& value,
|
|
uint8_t* (*Writer)(int, T, uint8_t*), uint8_t* target) {
|
|
const int n = value.size();
|
|
if (n == 0) {
|
|
return target;
|
|
}
|
|
|
|
const T* ii = value.data();
|
|
int i = 0;
|
|
do {
|
|
target = Writer(field_number, ii[i], target);
|
|
} while (++i < n);
|
|
|
|
return target;
|
|
}
|
|
|
|
inline uint8_t* WireFormatLite::WriteInt32ToArray(
|
|
int field_number, const RepeatedField<int32_t>& value, uint8_t* target) {
|
|
return WritePrimitiveToArray(field_number, value, WriteInt32ToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteInt64ToArray(
|
|
int field_number, const RepeatedField<int64_t>& value, uint8_t* target) {
|
|
return WritePrimitiveToArray(field_number, value, WriteInt64ToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteUInt32ToArray(
|
|
int field_number, const RepeatedField<uint32_t>& value, uint8_t* target) {
|
|
return WritePrimitiveToArray(field_number, value, WriteUInt32ToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteUInt64ToArray(
|
|
int field_number, const RepeatedField<uint64_t>& value, uint8_t* target) {
|
|
return WritePrimitiveToArray(field_number, value, WriteUInt64ToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSInt32ToArray(
|
|
int field_number, const RepeatedField<int32_t>& value, uint8_t* target) {
|
|
return WritePrimitiveToArray(field_number, value, WriteSInt32ToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSInt64ToArray(
|
|
int field_number, const RepeatedField<int64_t>& value, uint8_t* target) {
|
|
return WritePrimitiveToArray(field_number, value, WriteSInt64ToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteFixed32ToArray(
|
|
int field_number, const RepeatedField<uint32_t>& value, uint8_t* target) {
|
|
return WritePrimitiveToArray(field_number, value, WriteFixed32ToArray,
|
|
target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteFixed64ToArray(
|
|
int field_number, const RepeatedField<uint64_t>& value, uint8_t* target) {
|
|
return WritePrimitiveToArray(field_number, value, WriteFixed64ToArray,
|
|
target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSFixed32ToArray(
|
|
int field_number, const RepeatedField<int32_t>& value, uint8_t* target) {
|
|
return WritePrimitiveToArray(field_number, value, WriteSFixed32ToArray,
|
|
target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteSFixed64ToArray(
|
|
int field_number, const RepeatedField<int64_t>& value, uint8_t* target) {
|
|
return WritePrimitiveToArray(field_number, value, WriteSFixed64ToArray,
|
|
target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteFloatToArray(
|
|
int field_number, const RepeatedField<float>& value, uint8_t* target) {
|
|
return WritePrimitiveToArray(field_number, value, WriteFloatToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteDoubleToArray(
|
|
int field_number, const RepeatedField<double>& value, uint8_t* target) {
|
|
return WritePrimitiveToArray(field_number, value, WriteDoubleToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteBoolToArray(
|
|
int field_number, const RepeatedField<bool>& value, uint8_t* target) {
|
|
return WritePrimitiveToArray(field_number, value, WriteBoolToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteEnumToArray(
|
|
int field_number, const RepeatedField<int>& value, uint8_t* target) {
|
|
return WritePrimitiveToArray(field_number, value, WriteEnumToArray, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteStringToArray(int field_number,
|
|
const std::string& value,
|
|
uint8_t* target) {
|
|
// String is for UTF-8 text only
|
|
// WARNING: In wire_format.cc, both strings and bytes are handled by
|
|
// WriteString() to avoid code duplication. If the implementations become
|
|
// different, you will need to update that usage.
|
|
target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target);
|
|
return io::CodedOutputStream::WriteStringWithSizeToArray(value, target);
|
|
}
|
|
inline uint8_t* WireFormatLite::WriteBytesToArray(int field_number,
|
|
const std::string& value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target);
|
|
return io::CodedOutputStream::WriteStringWithSizeToArray(value, target);
|
|
}
|
|
|
|
|
|
// See comment on ReadGroupNoVirtual to understand the need for this template
|
|
// parameter name.
|
|
template <typename MessageType_WorkAroundCppLookupDefect>
|
|
inline uint8_t* WireFormatLite::InternalWriteGroupNoVirtualToArray(
|
|
int field_number, const MessageType_WorkAroundCppLookupDefect& value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_START_GROUP, target);
|
|
target = value.MessageType_WorkAroundCppLookupDefect::
|
|
SerializeWithCachedSizesToArray(target);
|
|
return WriteTagToArray(field_number, WIRETYPE_END_GROUP, target);
|
|
}
|
|
template <typename MessageType_WorkAroundCppLookupDefect>
|
|
inline uint8_t* WireFormatLite::InternalWriteMessageNoVirtualToArray(
|
|
int field_number, const MessageType_WorkAroundCppLookupDefect& value,
|
|
uint8_t* target) {
|
|
target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target);
|
|
target = io::CodedOutputStream::WriteVarint32ToArray(
|
|
static_cast<uint32_t>(
|
|
value.MessageType_WorkAroundCppLookupDefect::GetCachedSize()),
|
|
target);
|
|
return value
|
|
.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizesToArray(
|
|
target);
|
|
}
|
|
|
|
// ===================================================================
|
|
|
|
inline size_t WireFormatLite::Int32Size(int32_t value) {
|
|
return io::CodedOutputStream::VarintSize32SignExtended(value);
|
|
}
|
|
inline size_t WireFormatLite::Int64Size(int64_t value) {
|
|
return io::CodedOutputStream::VarintSize64(static_cast<uint64_t>(value));
|
|
}
|
|
inline size_t WireFormatLite::UInt32Size(uint32_t value) {
|
|
return io::CodedOutputStream::VarintSize32(value);
|
|
}
|
|
inline size_t WireFormatLite::UInt64Size(uint64_t value) {
|
|
return io::CodedOutputStream::VarintSize64(value);
|
|
}
|
|
inline size_t WireFormatLite::SInt32Size(int32_t value) {
|
|
return io::CodedOutputStream::VarintSize32(ZigZagEncode32(value));
|
|
}
|
|
inline size_t WireFormatLite::SInt64Size(int64_t value) {
|
|
return io::CodedOutputStream::VarintSize64(ZigZagEncode64(value));
|
|
}
|
|
inline size_t WireFormatLite::EnumSize(int value) {
|
|
return io::CodedOutputStream::VarintSize32SignExtended(value);
|
|
}
|
|
inline size_t WireFormatLite::Int32SizePlusOne(int32_t value) {
|
|
return io::CodedOutputStream::VarintSize32SignExtendedPlusOne(value);
|
|
}
|
|
inline size_t WireFormatLite::Int64SizePlusOne(int64_t value) {
|
|
return io::CodedOutputStream::VarintSize64PlusOne(
|
|
static_cast<uint64_t>(value));
|
|
}
|
|
inline size_t WireFormatLite::UInt32SizePlusOne(uint32_t value) {
|
|
return io::CodedOutputStream::VarintSize32PlusOne(value);
|
|
}
|
|
inline size_t WireFormatLite::UInt64SizePlusOne(uint64_t value) {
|
|
return io::CodedOutputStream::VarintSize64PlusOne(value);
|
|
}
|
|
inline size_t WireFormatLite::SInt32SizePlusOne(int32_t value) {
|
|
return io::CodedOutputStream::VarintSize32PlusOne(ZigZagEncode32(value));
|
|
}
|
|
inline size_t WireFormatLite::SInt64SizePlusOne(int64_t value) {
|
|
return io::CodedOutputStream::VarintSize64PlusOne(ZigZagEncode64(value));
|
|
}
|
|
inline size_t WireFormatLite::EnumSizePlusOne(int value) {
|
|
return io::CodedOutputStream::VarintSize32SignExtendedPlusOne(value);
|
|
}
|
|
|
|
inline size_t WireFormatLite::StringSize(const std::string& value) {
|
|
return LengthDelimitedSize(value.size());
|
|
}
|
|
inline size_t WireFormatLite::BytesSize(const std::string& value) {
|
|
return LengthDelimitedSize(value.size());
|
|
}
|
|
|
|
|
|
template <typename MessageType>
|
|
inline size_t WireFormatLite::GroupSize(const MessageType& value) {
|
|
return value.ByteSizeLong();
|
|
}
|
|
template <typename MessageType>
|
|
inline size_t WireFormatLite::MessageSize(const MessageType& value) {
|
|
return LengthDelimitedSize(value.ByteSizeLong());
|
|
}
|
|
|
|
// See comment on ReadGroupNoVirtual to understand the need for this template
|
|
// parameter name.
|
|
template <typename MessageType_WorkAroundCppLookupDefect>
|
|
inline size_t WireFormatLite::GroupSizeNoVirtual(
|
|
const MessageType_WorkAroundCppLookupDefect& value) {
|
|
return value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong();
|
|
}
|
|
template <typename MessageType_WorkAroundCppLookupDefect>
|
|
inline size_t WireFormatLite::MessageSizeNoVirtual(
|
|
const MessageType_WorkAroundCppLookupDefect& value) {
|
|
return LengthDelimitedSize(
|
|
value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong());
|
|
}
|
|
|
|
inline size_t WireFormatLite::LengthDelimitedSize(size_t length) {
|
|
// The static_cast here prevents an error in certain compiler configurations
|
|
// but is not technically correct--if length is too large to fit in a uint32_t
|
|
// then it will be silently truncated. We will need to fix this if we ever
|
|
// decide to start supporting serialized messages greater than 2 GiB in size.
|
|
return length +
|
|
io::CodedOutputStream::VarintSize32(static_cast<uint32_t>(length));
|
|
}
|
|
|
|
template <typename MS>
|
|
bool ParseMessageSetItemImpl(io::CodedInputStream* input, MS ms) {
|
|
// This method parses a group which should contain two fields:
|
|
// required int32 type_id = 2;
|
|
// required data message = 3;
|
|
|
|
uint32_t last_type_id = 0;
|
|
|
|
// If we see message data before the type_id, we'll append it to this so
|
|
// we can parse it later.
|
|
std::string message_data;
|
|
|
|
enum class State { kNoTag, kHasType, kHasPayload, kDone };
|
|
State state = State::kNoTag;
|
|
|
|
while (true) {
|
|
const uint32_t tag = input->ReadTagNoLastTag();
|
|
if (tag == 0) return false;
|
|
|
|
switch (tag) {
|
|
case WireFormatLite::kMessageSetTypeIdTag: {
|
|
uint32_t type_id;
|
|
if (!input->ReadVarint32(&type_id)) return false;
|
|
if (state == State::kNoTag) {
|
|
last_type_id = type_id;
|
|
state = State::kHasType;
|
|
} else if (state == State::kHasPayload) {
|
|
// We saw some message data before the type_id. Have to parse it
|
|
// now.
|
|
io::CodedInputStream sub_input(
|
|
reinterpret_cast<const uint8_t*>(message_data.data()),
|
|
static_cast<int>(message_data.size()));
|
|
sub_input.SetRecursionLimit(input->RecursionBudget());
|
|
if (!ms.ParseField(type_id, &sub_input)) {
|
|
return false;
|
|
}
|
|
message_data.clear();
|
|
state = State::kDone;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case WireFormatLite::kMessageSetMessageTag: {
|
|
if (state == State::kHasType) {
|
|
// Already saw type_id, so we can parse this directly.
|
|
if (!ms.ParseField(last_type_id, input)) {
|
|
return false;
|
|
}
|
|
state = State::kDone;
|
|
} else if (state == State::kNoTag) {
|
|
// We haven't seen a type_id yet. Append this data to message_data.
|
|
uint32_t length;
|
|
if (!input->ReadVarint32(&length)) return false;
|
|
if (static_cast<int32_t>(length) < 0) return false;
|
|
uint32_t size = static_cast<uint32_t>(
|
|
length + io::CodedOutputStream::VarintSize32(length));
|
|
message_data.resize(size);
|
|
auto ptr = reinterpret_cast<uint8_t*>(&message_data[0]);
|
|
ptr = io::CodedOutputStream::WriteVarint32ToArray(length, ptr);
|
|
if (!input->ReadRaw(ptr, length)) return false;
|
|
state = State::kHasPayload;
|
|
} else {
|
|
if (!ms.SkipField(tag, input)) return false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case WireFormatLite::kMessageSetItemEndTag: {
|
|
return true;
|
|
}
|
|
|
|
default: {
|
|
if (!ms.SkipField(tag, input)) return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace protobuf
|
|
} // namespace google
|
|
|
|
#include <google/protobuf/port_undef.inc>
|
|
|
|
#endif // GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
|