[/ Copyright (c) 2021 Matt Borland Use, modification and distribution are subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) ] [section:z_test /z/-tests] [heading Synopsis] ``` #include namespace boost { namespace math { namespace statistics { template std::pair one_sample_z_test(Real sample_mean, Real sample_variance, Real num_samples, Real assumed_mean); template::value_type> std::pair one_sample_z_test(ForwardIterator begin, ForwardIterator end, Real assumed_mean); template std::pair one_sample_z_test(Container const & v, typename Container::value_type assumed_mean); template::value_type> std::pair two_sample_z_test(ForwardIterator begin_1, ForwardIterator end_1, ForwardIterator begin_2, ForwardIterator begin_2); template std::pair two_sample_z_test(Container const & u, Container const & v); template::value_type> std::pair paired_samples_z_test(ForwardIterator begin_1, ForwardIterator end_1, ForwardIterator begin_2, ForwardIterator begin_2); template std::pair paired_samples_z_test(Container const & u, Container const & v); }}} ``` [heading Background] A set of C++11 compatible functions for various one sample and independent sample /z/-tests. The input can be any real number or set of real numbers. In the event that the input is an integer or a set of integers typename Real will be deduced as a double precision type. [heading One-sample /z/-test] A one-sample /z/-test is used to determine whether two population means are different when the variances are known and the sample sizes are large. The /z/-test is closely related to the /t/-test but can be performed using a large sample size. [$../graphs/one_sample_z_test_statistic.svg] where [$../graphs/one_sample_z_s_value.svg] with /X/ being the test-statistic and ยต[sub 0] being the assumed mean the test statistic /X/ can be assumed to come from a uniform real distribution. Since we wish to know if the sample mean deviates from the true mean in either direction, the test is two-tailed. Hence the /p/-value is straightforward to calculate from the uniform real distribution on /n/ - 1 degrees of freedom, but nonetheless it is convenient to have it computed here. An example usage is as follows: ``` #include #include #include std::random_device rd; std::mt19937 gen{rd()}; std::normal_distribution dis{0,1}; std::vector v(1024); for (auto & x : v) { x = dis(gen); } auto [t, p] = boost::math::statistics::one_sample_z_test(v, 0.0); ``` The test statistic is the first element of the pair, and the /p/-value is the second element. [heading Independent two-sample /z/-test] A two-sample /z/-test determines if the means of two sets of data have a statistically significant difference from each other. [$../graphs/two_sample_z_statistic.svg] [/Z=\frac{(\bar{X_1}-\bar{X_2})-(\mu_1-\mu_2)}{\sqrt{\sigma_{\bar{X_1}}^2+\sigma_{\bar{X_2}}^2}} = \frac{(\bar{X_1}-\bar{X_2})-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_1^2}{n_2}}}] An example of usage is as follows: ``` #include #include #include std::random_device rd; std::mt19937 gen{rd()}; std::normal_distribution dis{0,1}; std::vector u(1024); std::vector v(1024); for(std::size_t i = 0; i < u.size(); ++i) { u[i] = dis(gen); v[i] = dis(gen); } auto [t, p] = boost::math::statistics::two_sample_z_test(u, v); ``` /Nota bene:/ The sample sizes for the two sets of data do not need to be equal. [endsect] [/section:z_test]