/** * * Copyright (c) 2010 Matthias Walter (xammy@xammy.homelinux.net) * * Authors: Matthias Walter * * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * */ #include #include #include using namespace boost; /// Example to test for bipartiteness and print the certificates. template < typename Graph > void print_bipartite(const Graph& g) { typedef graph_traits< Graph > traits; typename traits::vertex_iterator vertex_iter, vertex_end; /// Most simple interface just tests for bipartiteness. bool bipartite = is_bipartite(g); if (bipartite) { typedef std::vector< default_color_type > partition_t; typedef typename property_map< Graph, vertex_index_t >::type index_map_t; typedef iterator_property_map< partition_t::iterator, index_map_t > partition_map_t; partition_t partition(num_vertices(g)); partition_map_t partition_map(partition.begin(), get(vertex_index, g)); /// A second interface yields a bipartition in a color map, if the graph /// is bipartite. is_bipartite(g, get(vertex_index, g), partition_map); for (boost::tie(vertex_iter, vertex_end) = vertices(g); vertex_iter != vertex_end; ++vertex_iter) { std::cout << "Vertex " << *vertex_iter << " has color " << (get(partition_map, *vertex_iter) == color_traits< default_color_type >::white() ? "white" : "black") << std::endl; } } else { typedef std::vector< typename traits::vertex_descriptor > vertex_vector_t; vertex_vector_t odd_cycle; /// A third interface yields an odd-cycle if the graph is not bipartite. find_odd_cycle(g, get(vertex_index, g), std::back_inserter(odd_cycle)); std::cout << "Odd cycle consists of the vertices:"; for (size_t i = 0; i < odd_cycle.size(); ++i) { std::cout << " " << odd_cycle[i]; } std::cout << std::endl; } } int main(int argc, char** argv) { typedef adjacency_list< vecS, vecS, undirectedS > vector_graph_t; typedef std::pair< int, int > E; /** * Create the graph drawn below. * * 0 - 1 - 2 * | | * 3 - 4 - 5 - 6 * / \ / * | 7 * | | * 8 - 9 - 10 **/ E bipartite_edges[] = { E(0, 1), E(0, 4), E(1, 2), E(2, 6), E(3, 4), E(3, 8), E(4, 5), E(4, 7), E(5, 6), E(6, 7), E(7, 10), E(8, 9), E(9, 10) }; vector_graph_t bipartite_vector_graph(&bipartite_edges[0], &bipartite_edges[0] + sizeof(bipartite_edges) / sizeof(E), 11); /** * Create the graph drawn below. * * 2 - 1 - 0 * | | * 3 - 6 - 5 - 4 * / \ / * | 7 * | / * 8 ---- 9 * **/ E non_bipartite_edges[] = { E(0, 1), E(0, 4), E(1, 2), E(2, 6), E(3, 6), E(3, 8), E(4, 5), E(4, 7), E(5, 6), E(6, 7), E(7, 9), E(8, 9) }; vector_graph_t non_bipartite_vector_graph(&non_bipartite_edges[0], &non_bipartite_edges[0] + sizeof(non_bipartite_edges) / sizeof(E), 10); /// Call test routine for a bipartite and a non-bipartite graph. print_bipartite(bipartite_vector_graph); print_bipartite(non_bipartite_vector_graph); return 0; }