412 lines
14 KiB
C++
Raw Normal View History

2025-01-12 20:40:08 +08:00
//
// Copyright 2005-2007 Adobe Systems Incorporated
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
#include <boost/gil/channel.hpp>
#include <boost/gil/channel_algorithm.hpp>
#include <boost/gil/typedefs.hpp>
#include <cstdint>
#include <exception>
#include <iostream>
#include <type_traits>
#if defined(BOOST_CLANG)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wfloat-equal"
#if (__clang_major__ >= 10)
#pragma clang diagnostic ignored "-Wtautological-overlap-compare"
#endif
#elif BOOST_GCC >= 40700
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
#elif BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
#pragma warning(push)
#pragma warning(disable:4512) //assignment operator could not be generated
#endif
using namespace boost::gil;
using namespace std;
void error_if(bool);
auto c8_min = channel_traits<uint8_t>::min_value();
auto c8_max = channel_traits<uint8_t>::max_value();
auto c8s_min = channel_traits<int8_t>::min_value();
auto c8s_max = channel_traits<int8_t>::max_value();
auto c16_min = channel_traits<uint16_t>::min_value();
auto c16_max = channel_traits<uint16_t>::max_value();
auto c16s_min = channel_traits<int16_t>::min_value();
auto c16s_max = channel_traits<int16_t>::max_value();
auto c32_min = channel_traits<uint32_t>::min_value();
auto c32_max = channel_traits<uint32_t>::max_value();
auto c32s_min = channel_traits<int32_t>::min_value();
auto c32s_max = channel_traits<int32_t>::max_value();
auto c32f_min = channel_traits<float32_t>::min_value();
auto c32f_max = channel_traits<float32_t>::max_value();
template <typename ChannelTestCore>
struct do_test : public ChannelTestCore {
using channel_t = typename ChannelTestCore::channel_t;
using channel_value_t = typename channel_traits<channel_t>::value_type;
do_test() : ChannelTestCore() {
error_if(this->_min_v != channel_traits<channel_t>::min_value());
error_if(this->_max_v != channel_traits<channel_t>::max_value());
}
void test_all() {
test_channel_invert();
test_channel_convert();
test_channel_multiply();
test_channel_math();
}
void test_mutable(std::false_type) {}
void test_mutable(std::true_type) {
channel_value_t mv=this->_min_v;
++this->_min_v; this->_min_v++;
--this->_min_v; this->_min_v--;
error_if(mv!=this->_min_v);
this->_min_v+=1;
this->_min_v-=1;
error_if(mv!=this->_min_v);
this->_min_v*=1;
this->_min_v/=1;
error_if(mv!=this->_min_v);
this->_min_v = 1; // assignable to scalar
this->_min_v = mv; // and to value type
// test swap
channel_value_t v1=this->_min_v;
channel_value_t v2=this->_max_v;
swap(this->_min_v, this->_max_v);
channel_value_t v3=this->_min_v;
channel_value_t v4=this->_max_v;
error_if(v1!=v4 || v2!=v3);
}
void test_channel_math() {
error_if(this->_min_v >= this->_max_v);
error_if(this->_max_v <= this->_min_v);
error_if(this->_min_v > this->_max_v);
error_if(this->_max_v < this->_min_v);
error_if(this->_max_v == this->_min_v);
error_if(!(this->_max_v != this->_min_v));
error_if(this->_min_v * 1 != this->_min_v);
error_if(this->_min_v / 1 != this->_min_v);
error_if((this->_min_v + 1) + 1 != (this->_min_v + 2));
error_if((this->_max_v - 1) - 1 != (this->_max_v - 2));
error_if(this->_min_v != 1 && this->_min_v==1); // comparable to integral
test_mutable(std::integral_constant<bool, channel_traits<channel_t>::is_mutable>());
}
void test_channel_invert() {
error_if(channel_invert(this->_min_v) != this->_max_v);
error_if(channel_invert(this->_max_v) != this->_min_v);
}
void test_channel_multiply() {
error_if(channel_multiply(this->_min_v, this->_min_v) != this->_min_v);
error_if(channel_multiply(this->_max_v, this->_max_v) != this->_max_v);
error_if(channel_multiply(this->_max_v, this->_min_v) != this->_min_v);
}
void test_channel_convert() {
channel_value_t v_min, v_max;
v_min=channel_convert<channel_t>(c8_min);
v_max=channel_convert<channel_t>(c8_max);
error_if(v_min!=this->_min_v || v_max!=this->_max_v);
v_min=channel_convert<channel_t>(c8s_min);
v_max=channel_convert<channel_t>(c8s_max);
error_if(v_min!=this->_min_v || v_max!=this->_max_v);
v_min=channel_convert<channel_t>(c16_min);
v_max=channel_convert<channel_t>(c16_max);
error_if(v_min!=this->_min_v || v_max!=this->_max_v);
v_min=channel_convert<channel_t>(c16s_min);
v_max=channel_convert<channel_t>(c16s_max);
error_if(v_min!=this->_min_v || v_max!=this->_max_v);
v_min=channel_convert<channel_t>(c32_min);
v_max=channel_convert<channel_t>(c32_max);
error_if(v_min!=this->_min_v || v_max!=this->_max_v);
v_min=channel_convert<channel_t>(c32s_min);
v_max=channel_convert<channel_t>(c32s_max);
error_if(v_min!=this->_min_v || v_max!=this->_max_v);
v_min=channel_convert<channel_t>(c32f_min);
v_max=channel_convert<channel_t>(c32f_max);
error_if(v_min!=this->_min_v || v_max!=this->_max_v);
}
};
// Different core classes depending on the different types of channels - channel values, references and subbyte references
// The cores ensure there are two members, _min_v and _max_v initialized with the minimum and maximum channel value.
// The different channel types have different ways to initialize them, thus require different cores
// For channel values simply initialize the value directly
template <typename ChannelValue>
class value_core {
protected:
using channel_t = ChannelValue;
channel_t _min_v;
channel_t _max_v;
value_core()
: _min_v(channel_traits<ChannelValue>::min_value())
, _max_v(channel_traits<ChannelValue>::max_value())
{
boost::function_requires<ChannelValueConcept<ChannelValue> >();
}
};
// For channel references we need to have separate channel values
template <typename ChannelRef>
class reference_core : public value_core<typename channel_traits<ChannelRef>::value_type>
{
using parent_t = value_core<typename channel_traits<ChannelRef>::value_type>;
protected:
using channel_t = ChannelRef;
channel_t _min_v;
channel_t _max_v;
reference_core()
: parent_t()
, _min_v(parent_t::_min_v)
, _max_v(parent_t::_max_v)
{
boost::function_requires<ChannelConcept<ChannelRef> >();
}
};
// For subbyte channel references we need to store the bit buffers somewhere
template <typename ChannelSubbyteRef, typename ChannelMutableRef = ChannelSubbyteRef>
class packed_reference_core {
protected:
using channel_t = ChannelSubbyteRef;
using integer_t = typename channel_t::integer_t;
channel_t _min_v, _max_v;
integer_t _min_buf, _max_buf;
packed_reference_core() : _min_v(&_min_buf), _max_v(&_max_buf) {
ChannelMutableRef b1(&_min_buf), b2(&_max_buf);
b1 = channel_traits<channel_t>::min_value();
b2 = channel_traits<channel_t>::max_value();
boost::function_requires<ChannelConcept<ChannelSubbyteRef> >();
}
};
template <typename ChannelSubbyteRef, typename ChannelMutableRef = ChannelSubbyteRef>
class packed_dynamic_reference_core {
protected:
using channel_t = ChannelSubbyteRef;
channel_t _min_v, _max_v;
typename channel_t::integer_t _min_buf, _max_buf;
packed_dynamic_reference_core(int first_bit1=1, int first_bit2=2) : _min_v(&_min_buf,first_bit1), _max_v(&_max_buf,first_bit2) {
ChannelMutableRef b1(&_min_buf,1), b2(&_max_buf,2);
b1 = channel_traits<channel_t>::min_value();
b2 = channel_traits<channel_t>::max_value();
boost::function_requires<ChannelConcept<ChannelSubbyteRef> >();
}
};
template <typename ChannelValue>
void test_channel_value() {
do_test<value_core<ChannelValue> >().test_all();
}
template <typename ChannelRef>
void test_channel_reference() {
do_test<reference_core<ChannelRef> >().test_all();
}
template <typename ChannelSubbyteRef>
void test_packed_channel_reference() {
do_test<packed_reference_core<ChannelSubbyteRef,ChannelSubbyteRef> >().test_all();
}
template <typename ChannelSubbyteRef, typename MutableRef>
void test_const_packed_channel_reference() {
do_test<packed_reference_core<ChannelSubbyteRef,MutableRef> >().test_all();
}
template <typename ChannelSubbyteRef>
void test_packed_dynamic_channel_reference() {
do_test<packed_dynamic_reference_core<ChannelSubbyteRef,ChannelSubbyteRef> >().test_all();
}
template <typename ChannelSubbyteRef, typename MutableRef>
void test_const_packed_dynamic_channel_reference() {
do_test<packed_dynamic_reference_core<ChannelSubbyteRef,MutableRef> >().test_all();
}
template <typename ChannelValue>
void test_channel_value_impl() {
test_channel_value<ChannelValue>();
test_channel_reference<ChannelValue&>();
test_channel_reference<const ChannelValue&>();
}
/////////////////////////////////////////////////////////
///
/// A channel archetype - to test the minimum requirements of the concept
///
/////////////////////////////////////////////////////////
struct channel_value_archetype;
struct channel_archetype {
// equality comparable
friend bool operator==(const channel_archetype&,const channel_archetype&) { return true; }
friend bool operator!=(const channel_archetype&,const channel_archetype&) { return false; }
// less-than comparable
friend bool operator<(const channel_archetype&,const channel_archetype&) { return false; }
// convertible to a scalar
operator std::uint8_t() const { return 0; }
channel_archetype& operator++() { return *this; }
channel_archetype& operator--() { return *this; }
channel_archetype operator++(int) { return *this; }
channel_archetype operator--(int) { return *this; }
template <typename Scalar> channel_archetype operator+=(Scalar) { return *this; }
template <typename Scalar> channel_archetype operator-=(Scalar) { return *this; }
template <typename Scalar> channel_archetype operator*=(Scalar) { return *this; }
template <typename Scalar> channel_archetype operator/=(Scalar) { return *this; }
using value_type = channel_value_archetype;
using reference = channel_archetype;
using const_reference = channel_archetype const;
using pointer = channel_value_archetype *;
using const_pointer = channel_value_archetype const*;
static constexpr bool is_mutable=true;
static value_type min_value();
static value_type max_value();
};
struct channel_value_archetype : public channel_archetype {
channel_value_archetype() {} // default constructible
channel_value_archetype(const channel_value_archetype&) {} // copy constructible
channel_value_archetype& operator=(const channel_value_archetype&){return *this;} // assignable
channel_value_archetype(std::uint8_t) {}
};
channel_value_archetype channel_archetype::min_value() { return channel_value_archetype(); }
channel_value_archetype channel_archetype::max_value() { return channel_value_archetype(); }
void test_packed_channel_reference()
{
using channel16_0_5_reference_t = packed_channel_reference<std::uint16_t, 0, 5, true>;
using channel16_5_6_reference_t = packed_channel_reference<std::uint16_t, 5, 6, true>;
using channel16_11_5_reference_t = packed_channel_reference<std::uint16_t, 11, 5, true>;
std::uint16_t data=0;
channel16_0_5_reference_t channel1(&data);
channel16_5_6_reference_t channel2(&data);
channel16_11_5_reference_t channel3(&data);
channel1=channel_traits<channel16_0_5_reference_t>::max_value();
channel2=channel_traits<channel16_5_6_reference_t>::max_value();
channel3=channel_traits<channel16_11_5_reference_t>::max_value();
error_if(data!=65535);
test_packed_channel_reference<channel16_0_5_reference_t>();
test_packed_channel_reference<channel16_5_6_reference_t>();
test_packed_channel_reference<channel16_11_5_reference_t>();
}
void test_packed_dynamic_channel_reference()
{
using channel16_5_reference_t = packed_dynamic_channel_reference<std::uint16_t, 5, true>;
using channel16_6_reference_t = packed_dynamic_channel_reference<std::uint16_t, 6, true>;
std::uint16_t data=0;
channel16_5_reference_t channel1(&data,0);
channel16_6_reference_t channel2(&data,5);
channel16_5_reference_t channel3(&data,11);
channel1=channel_traits<channel16_5_reference_t>::max_value();
channel2=channel_traits<channel16_6_reference_t>::max_value();
channel3=channel_traits<channel16_5_reference_t>::max_value();
error_if(data!=65535);
test_packed_dynamic_channel_reference<channel16_5_reference_t>();
}
void test_channel() {
test_channel_value_impl<uint8_t>();
test_channel_value_impl<int8_t>();
test_channel_value_impl<uint16_t>();
test_channel_value_impl<int16_t>();
test_channel_value_impl<uint32_t>();
test_channel_value_impl<int16_t>();
test_channel_value_impl<float32_t>();
test_packed_channel_reference();
test_packed_dynamic_channel_reference();
// Do only compile-time tests for the archetype (because asserts like val1<val2 fail)
boost::function_requires<MutableChannelConcept<channel_archetype> >();
do_test<value_core<channel_value_archetype> >();
do_test<reference_core<channel_archetype> >();
do_test<reference_core<const channel_archetype&> >();
}
int main()
{
try
{
test_channel();
return EXIT_SUCCESS;
}
catch (std::exception const& e)
{
std::cerr << e.what() << std::endl;
return EXIT_FAILURE;
}
catch (...)
{
return EXIT_FAILURE;
}
}
// TODO:
// - provide algorithm performance overloads for scoped channel and packed channels
// - Update concepts and documentation
// - What to do about pointer types?!
// - Performance!!
// - is channel_convert the same as native?
// - is operator++ on float32_t the same as native? How about if operator++ is defined in scoped_channel to do _value++?