204 lines
7.8 KiB
C++
Raw Normal View History

2025-01-12 20:40:08 +08:00
//
// Copyright 2019 Olzhas Zhumabek <anonymous.from.applecity@gmail.com>
// Copyright 2021 Pranam Lashkari <plashkari628@gmail.com>
//
// Use, modification and distribution are subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/gil/extension/io/png.hpp>
#include <boost/gil/image.hpp>
#include <boost/gil/image_processing/convolve.hpp>
#include <boost/gil/image_processing/harris.hpp>
#include <boost/gil/image_processing/numeric.hpp>
#include <boost/gil/image_view.hpp>
#include <boost/gil/typedefs.hpp>
#include "hvstack.hpp"
#include <fstream>
#include <functional>
#include <iostream>
#include <set>
#include <vector>
namespace gil = boost::gil;
// Demonstrates Harris corner detection
// some images might produce artifacts
// when converted to grayscale,
// which was previously observed on
// canny edge detector for test input
// used for this example
gil::gray8_image_t to_grayscale(gil::rgb8_view_t original)
{
gil::gray8_image_t output_image(original.dimensions());
auto output = gil::view(output_image);
constexpr double max_channel_intensity = (std::numeric_limits<std::uint8_t>::max)();
for (long int y = 0; y < original.height(); ++y)
{
for (long int x = 0; x < original.width(); ++x)
{
// scale the values into range [0, 1] and calculate linear intensity
double red_intensity =
original(x, y).at(std::integral_constant<int, 0>{}) / max_channel_intensity;
double green_intensity =
original(x, y).at(std::integral_constant<int, 1>{}) / max_channel_intensity;
double blue_intensity =
original(x, y).at(std::integral_constant<int, 2>{}) / max_channel_intensity;
auto linear_luminosity =
0.2126 * red_intensity + 0.7152 * green_intensity + 0.0722 * blue_intensity;
// perform gamma adjustment
double gamma_compressed_luminosity = 0;
if (linear_luminosity < 0.0031308)
{
gamma_compressed_luminosity = linear_luminosity * 12.92;
}
else
{
gamma_compressed_luminosity = 1.055 * std::pow(linear_luminosity, 1 / 2.4) - 0.055;
}
// since now it is scaled, descale it back
output(x, y) = gamma_compressed_luminosity * max_channel_intensity;
}
}
return output_image;
}
void apply_gaussian_blur(gil::gray8_view_t input_view, gil::gray8_view_t output_view)
{
constexpr static auto filterHeight = 5ull;
constexpr static auto filterWidth = 5ull;
constexpr static double filter[filterHeight][filterWidth] = {
{ 2, 4, 6, 4, 2 },
{ 4, 9, 12, 9, 4 },
{ 5, 12, 15, 12, 5},
{ 4, 9, 12, 9, 4 },
{ 2, 4, 5, 4, 2 }
};
constexpr double factor = 1.0 / 159;
constexpr double bias = 0.0;
const auto height = input_view.height();
const auto width = input_view.width();
for (long x = 0; x < width; ++x)
{
for (long y = 0; y < height; ++y)
{
double intensity = 0.0;
for (size_t filter_y = 0; filter_y < filterHeight; ++filter_y)
{
for (size_t filter_x = 0; filter_x < filterWidth; ++filter_x)
{
int image_x = x - filterWidth / 2 + filter_x;
int image_y = y - filterHeight / 2 + filter_y;
if (image_x >= input_view.width() || image_x < 0 ||
image_y >= input_view.height() || image_y < 0)
{
continue;
}
auto& pixel = input_view(image_x, image_y);
intensity +=
pixel.at(std::integral_constant<int, 0>{}) * filter[filter_y][filter_x];
}
}
auto& pixel = output_view(gil::point_t(x, y));
pixel = (std::min)((std::max)(int(factor * intensity + bias), 0), 255);
}
}
}
std::vector<gil::point_t> suppress(gil::gray32f_view_t harris_response,
double harris_response_threshold)
{
std::vector<gil::point_t> corner_points;
for (gil::gray32f_view_t::coord_t y = 1; y < harris_response.height() - 1; ++y)
{
for (gil::gray32f_view_t::coord_t x = 1; x < harris_response.width() - 1; ++x)
{
auto value = [](gil::gray32f_pixel_t pixel) {
return pixel.at(std::integral_constant<int, 0>{});
};
double values[9] = {
value(harris_response(x - 1, y - 1)), value(harris_response(x, y - 1)),
value(harris_response(x + 1, y - 1)), value(harris_response(x - 1, y)),
value(harris_response(x, y)), value(harris_response(x + 1, y)),
value(harris_response(x - 1, y + 1)), value(harris_response(x, y + 1)),
value(harris_response(x + 1, y + 1))};
auto maxima = *std::max_element(values, values + 9,
[](double lhs, double rhs) { return lhs < rhs; });
if (maxima == value(harris_response(x, y)) &&
std::count(values, values + 9, maxima) == 1 && maxima >= harris_response_threshold)
{
corner_points.emplace_back(x, y);
}
}
}
return corner_points;
}
int main(int argc, char* argv[])
{
if (argc != 6)
{
std::cout << "usage: " << argv[0]
<< " <input.png> <odd-window-size>"
" <discrimination-constant> <harris-response-threshold> <output.png>\n";
return -1;
}
std::size_t window_size = std::stoul(argv[2]);
double discrimnation_constant = std::stof(argv[3]);
long harris_response_threshold = std::stol(argv[4]);
gil::rgb8_image_t input_image;
gil::read_image(argv[1], input_image, gil::png_tag{});
auto original_image = input_image;
auto original_view = gil::view(original_image);
auto input_view = gil::view(input_image);
auto grayscaled = to_grayscale(input_view);
gil::gray8_image_t smoothed_image(grayscaled.dimensions());
auto smoothed = gil::view(smoothed_image);
apply_gaussian_blur(gil::view(grayscaled), smoothed);
gil::gray16s_image_t x_gradient_image(grayscaled.dimensions());
gil::gray16s_image_t y_gradient_image(grayscaled.dimensions());
auto x_gradient = gil::view(x_gradient_image);
auto y_gradient = gil::view(y_gradient_image);
auto scharr_x = gil::generate_dx_scharr();
gil::detail::convolve_2d(smoothed, scharr_x, x_gradient);
auto scharr_y = gil::generate_dy_scharr();
gil::detail::convolve_2d(smoothed, scharr_y, y_gradient);
gil::gray32f_image_t m11(x_gradient.dimensions());
gil::gray32f_image_t m12_21(x_gradient.dimensions());
gil::gray32f_image_t m22(x_gradient.dimensions());
gil::compute_tensor_entries(x_gradient, y_gradient, gil::view(m11), gil::view(m12_21),
gil::view(m22));
gil::gray32f_image_t harris_response(x_gradient.dimensions());
auto gaussian_kernel = gil::generate_gaussian_kernel(window_size, 0.84089642);
gil::compute_harris_responses(gil::view(m11), gil::view(m12_21), gil::view(m22),
gaussian_kernel, discrimnation_constant,
gil::view(harris_response));
auto corner_points = suppress(gil::view(harris_response), harris_response_threshold);
for (auto point : corner_points)
{
input_view(point) = gil::rgb8_pixel_t(0, 0, 0);
input_view(point).at(std::integral_constant<int, 1>{}) = 255;
}
auto stacked = gil::hstack(std::vector<gil::rgb8_view_t>{original_view, input_view});
gil::write_view(argv[5], gil::view(stacked), gil::png_tag{});
}