204 lines
7.0 KiB
Plaintext
Raw Normal View History

2025-01-12 20:40:48 +08:00
[/
Copyright (c) 2021 - 2022 Matt Borland
Use, modification and distribution are subject to the
Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
]
[section:ccmath Constexpr CMath]
[heading Description]
`Constexpr` implementations of the functionality found in `<cmath>` and `<cstdlib>` [@https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p0533r9.pdf proposed for C++23].
In a `constexpr` context the functions will use an implementation defined in boost.
If the context is not `constexpr` the functionality will be directly from the STL implementation of `<cmath>` used by the compiler.
All functions that take an `Integer` type and return a `double` simply cast the `Integer` argument to a `double`.
All of the following functions require C++17 or greater.
[heading Synopsis]
``
#include <boost/math/ccmath/ccmath.hpp>
``
namespace boost::math::ccmath {
template <typename T>
inline constexpr bool isinf(T x);
template <typename T>
inline constexpr bool isnan(T x);
template <typename Real>
inline constexpr Real sqrt(Real x);
template <typename Integer>
inline constexpr double sqrt(Integer x);
template <typename T>
inline constexpr T abs(T x);
template <typename T, std::enable_if_t<std::is_unsigned_v<T>, bool> = true>
inline constexpr int abs(T x);
template <typename T>
inline constexpr T fabs(T x);
template <typename T>
inline constexpr bool isfinite(T x);
template <typename T>
inline constexpr bool isnormal(T x);
template <typename T>
inline constexpr int fpclassify(T x);
template <typename Real>
inline constexpr Real frexp(Real arg, int* exp);
template <typename Integer>
inline constexpr double frexp(Integer arg, int* exp);
template <typename Real>
inline constexpr Real ldexp(Real arg, int exp);
template <typename Integer>
inline constexpr double ldexp(Integer arg, int exp);
template <typename Integer>
struct div_t {Integer quot; Integer rem;};
template <typename Integer>
inline constexpr div_t<Integer> div(Integer x, Integer y);
template <typename Real>
inline constexpr Real logb(Real arg);
template <typename Integer>
inline constexpr double logb(Integer arg);
template <typename T>
inline constexpr int ilogb(T arg);
template <typename Real>
inline constexpr Real scalbn(Real x, int exp) noexcept
template <typename Integer>
inline constexpr double scalbn(Integer x, int exp) noexcept
template <typename Real>
inline constexpr Real scalbln(Real x, long exp) noexcept
template <typename Integer>
inline constexpr double scalbln(Integer x, long exp) noexcept
template <typename Real>
inline constexpr Real floor(Real arg) noexcept
template <typename Integer>
inline constexpr double floor(Integer arg) noexcept
template <typename Real>
inline constexpr Real ceil(Real arg) noexcept
template <typename Integer>
inline constexpr double ceil(Integer arg) noexcept
template <typename Real>
inline constexpr Real trunc(Real arg) noexcept
template <typename Integer>
inline constexpr double trunc(Integer arg) noexcept
template <typename Real>
inline constexpr Real modf(Real x, Real* iptr) noexcept
template <typename Real>
inline constexpr Real round(Real arg) noexcept
template <typename Integer>
inline constexpr double round(Integer arg) noexcept
template <typename T>
inline constexpr long lround(T arg)
template <typename T>
inline constexpr long long llround(T arg)
template <typename Real>
inline constexpr Real fmod(Real x, Real y) noexcept
template <typename Arithmetic1, typename Arithmetic2>
inline constexpr Promoted fmod(Arithmetic1 x, Arithmetic2 y) noexcept
The Promoted return type will have at least double prescision, but be up to the highest precision argument.
template <typename Real>
inline constexpr Real remainder(Real x, Real y) noexcept
template <typename Arithmetic1, typename Arithmetic2>
inline constexpr Promoted remainder(Arithmetic1 x, Arithmetic2 y) noexcept
template <typename Real>
inline constexpr Real copysign(Real mag, Real sgn) noexcept
template <typename Arithmetic1, typename Arithmetic2>
inline constexpr Promoted copysign(Arithmetic1 mag, Arithmetic2 sgn) noexcept
template <typename Real>
inline constexpr Real hypot(Real x, Real y) noexcept
template <typename Arithmetic1, typename Arithmetic2>
inline constexpr Promoted hypot(Arithmetic1 x, Arithmetic2 y) noexcept
template <typename Real>
inline constexpr Real fdim(Real x, Real y) noexcept
template <typename Arithmetic1, typename Arithmetic2>
inline constexpr Promoted fdim(Arithmetic1 x, Arithmetic2 y) noexcept
template <typename Real>
inline constexpr Real fmax(Real x, Real y) noexcept
template <typename Arithmetic1, typename Arithmetic2>
inline constexpr Promoted fmax(Arithmetic1 x, Arithmetic2 y) noexcept
template <typename Real>
inline constexpr Real fmin(Real x, Real y) noexcept
template <typename Arithmetic1, typename Arithmetic2>
inline constexpr Promoted fmin(Arithmetic1 x, Arithmetic2 y) noexcept
template <typename Arithmetic1, typename Arithmetic2 = Arithmetic1>
inline constexpr bool isgreater(Arithmetic1 x, Arithmetic2 y) noexcept
template <typename Arithmetic1, typename Arithmetic2 = Arithmetic1>
inline constexpr bool isgreaterequal(Arithmetic1 x, Arithmetic2 y) noexcept
template <typename Arithmetic1, typename Arithmetic2 = Arithmetic1>
inline constexpr bool isless(Arithmetic1 x, Arithmetic2 y) noexcept
template <typename Arithmetic1, typename Arithmetic2 = Arithmetic1>
inline constexpr bool islessequal(Arithmetic1 x, Arithmetic2 y) noexcept
template <typename T>
inline constexpr bool isunordered(T x, T y) noexcept
template <typename Real>
inline constexpr Real fma(Real x, Real y, Real z) noexcept
Requires compiling with fma flag
template <typename Arithmetic1, typename Arithmetic2, typename Arithmetic3>
inline constexpr Promoted fma(Arithmetic1 x, Arithmetic2 y, Arithmetic3 z) noexcept
template <typename Arithmetic1, typename Arithmetic2>
constexpr Promoted nextafter(Arithmetic1 from, Arithmetic2 to)
template <typename T>
constexpr Promoted nexttoward(T from, long double to)
template <typename T>
constexpr bool signbit(T arg)
} // Namespaces
[endsect] [/section:ccmath Constexpr CMath]